TY - JOUR A1 - Guill, Christian A1 - Hülsemann, Janne A1 - Klauschies, Toni T1 - Self-organised pattern formation increases local diversity in metacommunities JF - Ecology letters N2 - Self-organised formation of spatial patterns is known from a variety of different ecosystems, yet little is known about how these patterns affect the diversity of communities. Here, we use a food chain model in which autotroph diversity is described by a continuous distribution of a trait that affects both growth and defence against heterotrophs. On isolated patches, diversity is always lost over time due to stabilising selection, and the local communities settle on one of two alternative stable community states that are characterised by a dominance of either defended or undefended species. In a metacommunity context, dispersal can destabilise these states and complex spatio-temporal patterns in the species' abundances emerge. The resulting biomass-trait feedback increases local diversity by an order of magnitude compared to scenarios without self-organised pattern formation, thereby maintaining the ability of communities to adapt to potential future changes in biotic or abiotic environmental conditions. KW - biomass-trait feedback KW - fitness gradient KW - food chain KW - functional KW - diversity KW - metacommunity KW - self-organisation KW - source-sink dynamics KW - spatio-temporal pattern KW - trait-based aggregate model KW - Turing instability Y1 - 2021 U6 - https://doi.org/10.1111/ele.13880 SN - 1461-023X SN - 1461-0248 VL - 24 IS - 12 SP - 2624 EP - 2634 PB - Wiley-Blackwell CY - Oxford ER - TY - JOUR A1 - Yamamichi, Masato A1 - Klauschies, Toni A1 - Miner, Brooks E. A1 - van Velzen, Ellen T1 - Modelling inducible defences in predator-prey interactions BT - assumptions and dynamical consequences of three distinct approaches JF - Ecology letters N2 - Inducible defences against predation are widespread in the natural world, allowing prey to economise on the costs of defence when predation risk varies over time or is spatially structured. Through interspecific interactions, inducible defences have major impacts on ecological dynamics, particularly predator-prey stability and phase lag. Researchers have developed multiple distinct approaches, each reflecting assumptions appropriate for particular ecological communities. Yet, the impact of inducible defences on ecological dynamics can be highly sensitive to the modelling approach used, making the choice of model a critical decision that affects interpretation of the dynamical consequences of inducible defences. Here, we review three existing approaches to modelling inducible defences: Switching Function, Fitness Gradient and Optimal Trait. We assess when and how the dynamical outcomes of these approaches differ from each other, from classic predator-prey dynamics and from commonly observed eco-evolutionary dynamics with evolving, but non-inducible, prey defences. We point out that the Switching Function models tend to stabilise population dynamics, and the Fitness Gradient models should be carefully used, as the difference with evolutionary dynamics is important. We discuss advantages of each approach for applications to ecological systems with particular features, with the goal of providing guidelines for future researchers to build on. KW - Adaptive dynamics KW - fitness gradient KW - inducible defence KW - optimal trait KW - phenotypic plasticity KW - predator-prey dynamics KW - reaction norm KW - switching function Y1 - 2019 U6 - https://doi.org/10.1111/ele.13183 SN - 1461-023X SN - 1461-0248 VL - 22 IS - 2 SP - 390 EP - 404 PB - Wiley CY - Hoboken ER -