TY - BOOK A1 - Gutlederer, Erwin Johann T1 - On the morphology of vesicles. - [überarb. Diss.] N2 - This dissertation contains theoretical investigations on the morphology and statistical mechanics of vesicles. The shapes of homogeneous fluid vesicles and inhomogeneous vesicles with fluid and solid membrane domains are calculated. The influence of thermal fluctuations is investigated. The obtained results are valid on mesoscopic length scales and are based on a geometrical membrane model, where the vesicle membrane is described as either a static or a thermal fluctuating surface. The thesis consists of three parts. In the first part, homogeneous vesicles are considered. The focus in this part is on the thermally induced morphological transition between vesicles with prolate and oblate shape. With the help of Monte Carlo simulations, the free energy profile of these vesicles is determined. It can be shown that the shape transformation between prolate and oblate vesicles proceeds continuously and is not hampered by a free energy barrier. The second and third part deal with inhomogeneous vesicles which contain intramembrane domains. These investigations are motivated by experimental results on domain formation in single or multicomponent vesicles, where phase separation occurs and different membrane phases coexist. The resulting domains differ with regard to their membrane structure (solid, fluid). The membrane structure has a distinct effect on the form of the domain and the morphology of the vesicle. In the second part, vesicles with coexisting solid and fluid membrane domains are studied, while the third part addresses vesicles with coexisting fluid domains. The equilibrium morphology of vesicles with simple and complex domain forms, derived through minimisation of the membrane energy, is determined as a function of material parameters. The results are summarised in morphology diagrams. These diagrams show previously unknown morphological transitions between vesicles with different domain shapes. The impact of thermal fluctuations on the vesicle and the form of the domains is investigated by means of Monte Carlo simulations. N2 - Die vorliegende Arbeit enthält theoretische Untersuchungen zur Morphologie und statistischen Mechanik von Vesikeln. Es wird die Gestalt homogener fluider Vesikel und inhomogener Vesikel mit fluiden und festen Membrandomänen berechnet. Der Einfluss thermischer Fluktuationen wird untersucht. Die erzielten Ergebnisse beziehen sich auf mesoskopische Längenskalen und basieren auf einem geometrischen Membranmodell, in welchem die Vesikelmembran als statische, beziehungsweise thermisch fluktuierende Fläche beschrieben wird. Die Arbeit besteht aus drei Teilen. Im ersten Teil werden homogene fluide Vesikel betrachtet. Das Interesse gilt dem thermisch induzierten Morphologieübergang zwischen prolaten und oblaten Vesikelformen. Mit Hilfe von Monte-Carlo-Simulationen wird ein freies Energieprofil für diese Vesikel ermittelt. Es kann gezeigt werden, dass die Formumwandlung zwischen prolaten und oblaten Formen kontinuierlich verläuft und mit keiner freien Energiebarriere verbunden ist. Der zweite und dritte Teil beschäftigt sich mit inhomogenen Vesikeln, die intramembrane Domänen enthalten. Ausgangspunkt und Motivation der Berechnungen sind experimentelle Studien über Domänbildung in ein- oder mehrkomponentigen Vesikelmembranen, bei denen Phasentrennung stattfindet und unterschiedliche Membranphasen koexistieren. Die dabei auftretenden Domänen unterscheiden sich hinsichtlich ihrer Membranstruktur (fest, fluid). Diese beeinflusst die Form der Domäne und des gesamten Vesikels auf entscheidende Weise. Im zweiten Teil werden Vesikel untersucht, bei denen feste und fluide Membrandomänen koexistieren, Teil drei widmet sich Vesikeln mit zwei koexistierenden fluiden Membranphasen. In Abhängigkeit von Materialparametern werden durch Minimierung der Membranenergie die Grundzustandsformen von Vesikeln mit einfachen und komplexen Domänenformen bestimmt. Die Ergebnisse werden in Morphologiediagrammen zusammengefasst. Dabei werden bisher unbekannte Morphologieübergänge zwischen Vesikeln mit unterschiedlichen Domänformen beobachtet. Die Auswirkungen thermischer Fluktuationen auf die Vesikel und die Form ihrer Domänen werden mittels Monte-Carlo-Simulationen untersucht. KW - Vesikel KW - Membran KW - Domänen KW - vesicle KW - membrane KW - domains Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-15065 ER - TY - JOUR A1 - Jeon, Jae-Hyung A1 - Chechkin, Aleksei V. A1 - Metzler, Ralf T1 - Scaled Brownian motion: a paradoxical process with a time dependent diffusivity for the description of anomalous diffusion JF - Physical chemistry, chemical physics : PCCP N2 - Anomalous diffusion is frequently described by scaled Brownian motion (SBM){,} a Gaussian process with a power-law time dependent diffusion coefficient. Its mean squared displacement is ?x2(t)? [similar{,} equals] 2K(t)t with K(t) [similar{,} equals] t[small alpha]-1 for 0 < [small alpha] < 2. SBM may provide a seemingly adequate description in the case of unbounded diffusion{,} for which its probability density function coincides with that of fractional Brownian motion. Here we show that free SBM is weakly non-ergodic but does not exhibit a significant amplitude scatter of the time averaged mean squared displacement. More severely{,} we demonstrate that under confinement{,} the dynamics encoded by SBM is fundamentally different from both fractional Brownian motion and continuous time random walks. SBM is highly non-stationary and cannot provide a physical description for particles in a thermalised stationary system. Our findings have direct impact on the modelling of single particle tracking experiments{,} in particular{,} under confinement inside cellular compartments or when optical tweezers tracking methods are used. KW - single-particle tracking KW - living cells KW - random-walks KW - subdiffusion KW - dynamics KW - nonergodicity KW - coefficients KW - transport KW - membrane KW - behavior Y1 - 2014 U6 - https://doi.org/10.1039/C4CP02019G VL - 30 IS - 16 SP - 15811 EP - 15817 PB - The Royal Society of Chemistry CY - Cambridge ER - TY - GEN A1 - Jeon, Jae-Hyung A1 - Chechkin, Aleksei V. A1 - Metzler, Ralf T1 - Scaled Brownian motion: a paradoxical process with a time dependent diffusivity for the description of anomalous diffusion N2 - Anomalous diffusion is frequently described by scaled Brownian motion (SBM){,} a Gaussian process with a power-law time dependent diffusion coefficient. Its mean squared displacement is ?x2(t)? [similar{,} equals] 2K(t)t with K(t) [similar{,} equals] t[small alpha]-1 for 0 < [small alpha] < 2. SBM may provide a seemingly adequate description in the case of unbounded diffusion{,} for which its probability density function coincides with that of fractional Brownian motion. Here we show that free SBM is weakly non-ergodic but does not exhibit a significant amplitude scatter of the time averaged mean squared displacement. More severely{,} we demonstrate that under confinement{,} the dynamics encoded by SBM is fundamentally different from both fractional Brownian motion and continuous time random walks. SBM is highly non-stationary and cannot provide a physical description for particles in a thermalised stationary system. Our findings have direct impact on the modelling of single particle tracking experiments{,} in particular{,} under confinement inside cellular compartments or when optical tweezers tracking methods are used. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 180 KW - single-particle tracking KW - living cells KW - random-walks KW - subdiffusion KW - dynamics KW - nonergodicity KW - coefficients KW - transport KW - membrane KW - behavior Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-76302 SP - 15811 EP - 15817 ER - TY - JOUR A1 - Schwarze, Thomas A1 - Müller, Holger A1 - Ast, Sandra A1 - Steinbrück, Dörte A1 - Eidner, Sascha A1 - Geißler, Felix A1 - Kumke, Michael Uwe A1 - Holdt, Hans-Jürgen ED - Kumke, Michael Uwe T1 - Fluorescence lifetime-based sensing of sodium by an optode JF - Chemical Communications N2 - We report a 1,2,3-triazol fluoroionophore for detecting Na+ that shows in vitro enhancement in the Na+-induced fluorescence intensity and decay time. The Na+-selective molecule 1 was incorporated into a hydrogel as a part of a fiber optical sensor. This sensor allows the direct determination of Na+ in the range of 1–10 mM by measuring reversible fluorescence decay time changes. KW - ion optodes KW - sensors KW - indicators KW - chromoionophore KW - ionophore KW - membrane KW - switches KW - systems KW - samples KW - green Y1 - 2014 SN - 0022-4936 SN - 0009-241X SP - 14167 EP - 14170 PB - The Royal Society Chemistry CY - Cambridge ER - TY - GEN A1 - Schwarze, Thomas A1 - Müller, Holger A1 - Ast, Sandra A1 - Steinbrück, Dörte A1 - Eidner, Sascha A1 - Geißler, Felix A1 - Kumke, Michael Uwe A1 - Holdt, Hans-Jürgen T1 - Fluorescence lifetime-based sensing of sodium by an optode N2 - We report a 1,2,3-triazol fluoroionophore for detecting Na+ that shows in vitro enhancement in the Na+-induced fluorescence intensity and decay time. The Na+-selective molecule 1 was incorporated into a hydrogel as a part of a fiber optical sensor. This sensor allows the direct determination of Na+ in the range of 1–10 mM by measuring reversible fluorescence decay time changes. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 182 KW - ion optodes KW - sensors KW - indicators KW - chromoionophore KW - ionophore KW - membrane KW - switches KW - systems KW - samples KW - green Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-76785 SP - 14167 EP - 14170 PB - The Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Dani, Alessandro A1 - Tauber, Karoline A1 - Zhang, Weiyi A1 - Schlaad, Helmut A1 - Yuan, Jiayin T1 - Stable Covalently Photo-Crosslinked Poly(Ionic Liquid) Membrane with Gradient Pore Size JF - Macromolecular rapid communications N2 - Porous polyelectrolyte membranes stable in a highly ionic environment are obtained by covalent crosslinking of an imidazolium-based poly(ionic liquid). The crosslinking reaction involves the UV light-induced thiol-ene (click) chemistry, and the phase separation, occurring during the crosslinking step, generates a fully interconnected porous structure in the membrane. The porosity is on the order of the micrometer scale and the membrane shows a gradient of pore size across the membrane cross-section. The membrane can separate polystyrene latex particles of different size and undergoes actuation in contact with acetone due to the asymmetric porous structure. KW - membrane KW - photo-crosslinked KW - poly(ionic liquid) KW - porous structure Y1 - 2017 U6 - https://doi.org/10.1002/marc.201700167 SN - 1022-1336 SN - 1521-3927 VL - 38 PB - Wiley-VCH CY - Weinheim ER - TY - THES A1 - Banerjee, Pallavi T1 - Glycosylphosphatidylinositols (GPIs) and GPI-anchored proteins tethered to lipid bilayers BT - modelling a complex interplay of carbohydrates, proteins and lipids BT - Modellierung eines komplexen Zusammenspiels von Kohlenhydraten, Proteinen und Lipiden N2 - Glycosylphosphatidylinositols (GPIs) are highly complex glycolipids that serve as membrane anchors to a large variety of eukaryotic proteins. These are covalently attached to a group of peripheral proteins called GPI-anchored proteins (GPI-APs) through a post-translational modification in the endoplasmic reticulum. The GPI anchor is a unique structure composed of a glycan, with phospholipid tail at one end and a phosphoethanolamine linker at the other where the protein attaches. The glycan part of the GPI comprises a conserved pseudopentasaccharide core that could branch out to carry additional glycosyl or phosphoethanolamine units. GPI-APs are involved in a diverse range of cellular processes, few of which are signal transduction, protein trafficking, pathogenesis by protozoan parasites like the malaria- causing parasite Plasmodium falciparum. GPIs can also exist freely on the membrane surface without an attached protein such as those found in parasites like Toxoplasma gondii, the causative agent of Toxoplasmosis. These molecules are both structurally and functionally diverse, however, their structure-function relationship is still poorly understood. This is mainly because no clear picture exists regarding how the protein and the glycan arrange with respect to the lipid layer. Direct experimental evidence is rather scarce, due to which inconclusive pictures have emerged, especially regarding the orientation of GPIs and GPI-APs on membrane surfaces and the role of GPIs in membrane organization. It appears that computational modelling through molecular dynamics simulations would be a useful method to make progress. In this thesis, we attempt to explore characteristics of GPI anchors and GPI-APs embedded in lipid bilayers by constructing molecular models at two different resolutions – all-atom and coarse-grained. First, we show how to construct a modular molecular model of GPIs and GPI-anchored proteins that can be readily extended to a broad variety of systems, addressing the micro-heterogeneity of GPIs. We do so by creating a hybrid link to which GPIs of diverse branching and lipid tails of varying saturation with their optimized force fields, GLYCAM06 and Lipid14 respectively, can be attached. Using microsecond simulations, we demonstrate that GPI prefers to “flop-down” on the membrane, thereby, strongly interacting with the lipid heads, over standing upright like a “lollipop”. Secondly, we extend the model of the GPI core to carry out a systematic study of the structural aspects of GPIs carrying different side chains (parasitic and human GPI variants) inserted in lipid bilayers. Our results demonstrate the importance of the side branch residues as these are the most accessible, and thereby, recognizable epitopes. This finding qualitatively agrees with experimental observations that highlight the role of the side branches in immunogenicity of GPIs and the specificity thereof. The overall flop-down orientation of the GPIs with respect to the bilayer surface presents the side chain residues to face the solvent. Upon attaching the green fluorescent protein (GFP) to the GPI, it is seen to lie in close proximity to the bilayer, interacting both with the lipid heads and glycan part of the GPI. However the orientation of GFP is sensitive to the type of GPI it is attached to. Finally, we construct a coarse-grained model of the GPI and GPI-anchored GFP using a modified version of the MARTINI force-field, using which the timescale is enhanced by at least an order of magnitude compared to the atomistic system. This study provides a theoretical perspective on the conformational behavior of the GPI core and some of its branched variations in presence of lipid bilayers, as well as draws comparisons with experimental observations. Our modular atomistic model of GPI can be further employed to study GPIs of variable branching, and thereby, aid in designing future experiments especially in the area of vaccines and drug therapies. Our coarse-grained model can be used to study dynamic aspects of GPIs and GPI-APs w.r.t plasma membrane organization. Furthermore, the backmapping technique of converting coarse-grained trajectory back to the atomistic model would enable in-depth structural analysis with ample conformational sampling. N2 - Glykosylphosphatidyl-Inositole (GPIs) sind komplex Glykolipide, die insbesondere auf der Oberfläche eukaryotischer Zellen als Verankerung einer Reihe unterschiedlicher Proteine dienen. GPIs werden den Proteinen als post-translationale Modifikationen im endoplasmotischen Reticulum hinzugefügt. Die Verankerung in der Membran wird durch einen Phospholipidrest hergestellt, das Protein ist dann über ein sich daran anschließendes Pseudo-Pentasaccharid und einen Phospoethanolaminrest kovalent an den GPI Anker gebunden. Das Pseudo-Pentasaccharid ist dabei proteinunabhängig eine invariante Struktur, kann aber an bestimmten Stellen durch weitere Carbohydratseitenketten und/oder Phosphoethanolaminreste wesentlich erweitert werden. GPI-verankerte Proteine (engl. GPI-anchored proteins, GPI-APs) sind an einer Reihe zellulärer Prozesse beteiligt; einige davon betreffen intra- und interzelluläre Signalübermittlung oder Proteintransport auf der Zelloberfläche; die Pathogenese vieler Parasiten, wie etwa Plasmodium falciparum (Malaria) wird entscheidend durch GPI-APs bestimmt; es können aber auch die bei vielen parasitischen Einzellern freien, ohne Protein auftretenden GPIs pathogene Wirkung entfalten wie etwa bei der Toxoplasmose (Toxoplasma gondii). Der allgemeine Zusammenhang von Struktur eines GPI-AP und seiner Funktion ist allerdings bis heute zum größten Teil unbekannt. Dies liegt zum einen daran, dass sich kein klares Bild zeichnen lässt, wie ein GPI-AP relativ zur Zellmembran exponiert wird. Die relevanten Zeit- und Längenskalen sind experimentell unzugänglich, und entsprechende in vivo oder in vitro Untersuchungen liefern lediglich indirekte Hinweise. Der Fall GPI-verankerter Proteine ist daher ein Beispiel, in dem computergestützte Modellierung einen wesentlichen Beitrag zur Aufklärung leisten kann. In der vorliegenden Arbeit wird zunächst ein atomistisches, molekulardynamisches Modell für GPIs und GPI-APs konstruiert und vorgestellt, mit dem sich GPI-APs auf der Längenskala einiger 10 Nanometer und einer Zeitskala von etwa 10 Mikrosekunden effizient untersuchen lassen. Modularität des Modells ist hierbei ein entscheidender Aspekt: mit den entwickelten Modellen lassen sich eine breite Palette von GPI Variationen darstellen. GPIs weisen, wie auch andere Proteinglykolysierungen eine sogenannte Mikroheterogenität auf; die Modifikation durch den Zucker kann sich zwischen den Kopien ein und desselben Proteins unterscheiden. Die technische Umsetzung erfolgt im Rahmen der sogenannten AMBER- Familie atomistischer Kraftfelder, die nach einem bestimmten Schema für biomolekulare Simulationen entwickelt wurden. Dabei werden existierende Modelle für Zucker (GLYCAM06) und Lipide (Lipid14) durch die Optimierung und Herleitung fehlender Parameter so angepasst, dass sich ein vollständiges GPI-AP in einer Lipid-Doppelschicht darstellen lässt. Dabei zeigt sich, dass das Protein vermittelt über den flexiblen Anker über einen beachtlichen Bewegungsspielraum verfügt. Im Falle des hier betrachteten Green Fluorescent Protein (GFP) kann man daher das Bild einer festen Orientierung des Proteins in Bezug auf die Lipidoberfläche verwerfen; wie in der Mehrzahl der Simulationen beobachtet, kann das GFP sogar vollständig auf der Lipidschicht zu liegen kommen. Weiterhin konnte nachgewiesen werden, dass eine Reihe möglicher Seitenketten des GPI Ankers, die zu Parasiten wie Toxoplasma gondii gehören und bei entsprechenden Immunreaktionen relevant sind, tatsächlich so exponiert werden, dass ihre Rolle als Rezeptoren unterstrichen wird. Das Pseudopentasaccharid selbst ist dabei teilweise in die Kopfgruppenregion der Lipidschicht eingebettet. Des Weiteren wurde hier das atomistische Modell auf eine vergröberte Darstellung im Rahmen des MARTINI Kraftfelds projiziert, um die zugänglichen Zeit- und Längenskalen noch einmal um einen Faktor 10 zu erweitern. Somit werden auch Studien GPI-APs möglich, bei denen sich ihre Dynamik in heterogenen Lipidschichten untersuchen lässt, etwa um Fragen zu beantworten, wie diese Proteine mit verschiedenen Membrandomänen assoziieren. Insgesamt werden mit dieser Arbeit eine Reihe von Ansätzen aufgezeigt, wie sich GPI verankerte Proteine möglicherweise effektiver in speziell angepassten Experimenten und in größerem Detail untersuchen lassen, als dies bisher möglich war. T2 - Glykosylphosphatidylinositole (GPIs) und GPI-verankerte Proteine, die an Lipid-Doppelschichten gebunden sind KW - GPI KW - carbohydrates KW - membrane KW - protein KW - molecular dynamics KW - coarse-graining KW - martini KW - GPI KW - Kohlenhydrate KW - grobkörnig KW - martini KW - Membran KW - Molekular-dynamik KW - Protein Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-489561 ER - TY - JOUR A1 - Bapolisi, Alain Murhimalika A1 - Kielb, Patrycja A1 - Bekir, Marek A1 - Lehnen, Anne-Catherine A1 - Radon, Christin A1 - Laroque, Sophie A1 - Wendler, Petra A1 - Müller-Werkmeister, Henrike A1 - Hartlieb, Matthias T1 - Antimicrobial polymers of linear and bottlebrush architecture BT - Probing the membrane interaction and physicochemical properties JF - Macromolecular rapid communications : publishing the newsletters of the European Polymer Federation N2 - Polymeric antimicrobial peptide mimics are a promising alternative for the future management of the daunting problems associated with antimicrobial resistance. However, the development of successful antimicrobial polymers (APs) requires careful control of factors such as amphiphilic balance, molecular weight, dispersity, sequence, and architecture. While most of the earlier developed APs focus on random linear copolymers, the development of APs with advanced architectures proves to be more potent. It is recently developed multivalent bottlebrush APs with improved antibacterial and hemocompatibility profiles, outperforming their linear counterparts. Understanding the rationale behind the outstanding biological activity of these newly developed antimicrobials is vital to further improving their performance. This work investigates the physicochemical properties governing the differences in activity between linear and bottlebrush architectures using various spectroscopic and microscopic techniques. Linear copolymers are more solvated, thermo-responsive, and possess facial amphiphilicity resulting in random aggregations when interacting with liposomes mimicking Escheria coli membranes. The bottlebrush copolymers adopt a more stable secondary conformation in aqueous solution in comparison to linear copolymers, conferring rapid and more specific binding mechanism to membranes. The advantageous physicochemical properties of the bottlebrush topology seem to be a determinant factor in the activity of these promising APs. KW - antimicrobial polymers KW - bottlebrush copolymers KW - liposomes KW - membrane KW - interactions KW - quartz crystal microbalance Y1 - 2022 U6 - https://doi.org/10.1002/marc.202200288 SN - 1521-3927 SN - 1022-1336 VL - 43 IS - 19 PB - Wiley-VCH CY - Weinheim ER -