TY - JOUR A1 - Tabatabaei, Iman A1 - Alseekh, Saleh A1 - Shahid, Mohammad A1 - Leniak, Ewa A1 - Wagner, Mateusz A1 - Mahmoudi, Henda A1 - Thushar, Sumitha A1 - Fernie, Alisdair R. A1 - Murphy, Kevin M. A1 - Schmöckel, Sandra M. A1 - Tester, Mark A1 - Müller-Röber, Bernd A1 - Skirycz, Aleksandra A1 - Balazadeh, Salma T1 - The diversity of quinoa morphological traits and seed metabolic composition JF - Scientific data N2 - Quinoa (Chenopodium quinoa Willd.) is an herbaceous annual crop of the amaranth family (Amaranthaceae). It is increasingly cultivated for its nutritious grains, which are rich in protein and essential amino acids, lipids, and minerals. Quinoa exhibits a high tolerance towards various abiotic stresses including drought and salinity, which supports its agricultural cultivation under climate change conditions. The use of quinoa grains is compromised by anti-nutritional saponins, a terpenoid class of secondary metabolites deposited in the seed coat; their removal before consumption requires extensive washing, an economically and environmentally unfavorable process; or their accumulation can be reduced through breeding. In this study, we analyzed the seed metabolomes, including amino acids, fatty acids, and saponins, from 471 quinoa cultivars, including two related species, by liquid chromatography - mass spectrometry. Additionally, we determined a large number of agronomic traits including biomass, flowering time, and seed yield. The results revealed considerable diversity between genotypes and provide a knowledge base for future breeding or genome editing of quinoa. Y1 - 2022 U6 - https://doi.org/10.1038/s41597-022-01399-y SN - 2052-4463 VL - 9 IS - 1 PB - Nature Research CY - Berlin ER - TY - JOUR A1 - Alshareef, Nouf Owdah A1 - Otterbach, Sophie L. A1 - Allu, Annapurna Devi A1 - Woo, Yong H. A1 - de Werk, Tobias A1 - Kamranfar, Iman A1 - Müller-Röber, Bernd A1 - Tester, Mark A1 - Balazadeh, Salma A1 - Schmöckel, Sandra M. T1 - NAC transcription factors ATAF1 and ANAC055 affect the heat stress response in Arabidopsis JF - Scientific reports N2 - Pre-exposing (priming) plants to mild, non-lethal elevated temperature improves their tolerance to a later higher-temperature stress (triggering stimulus), which is of great ecological importance. 'Thermomemory' is maintaining this tolerance for an extended period of time. NAM/ATAF1/2/ CUC2 (NAC) proteins are plant-specific transcription factors (TFs) that modulate responses to abiotic stresses, including heat stress (HS). Here, we investigated the potential role of NACs for thermomemory. We determined the expression of 104 Ara bidopsis NAC genes after priming and triggering heat stimuli, and found ATAF1 expression is strongly induced right after priming and declines below control levels thereafter during thermorecovery. Knockout mutants of ATAF1 show better thermomemory than wild type, revealing a negative regulatory role. Differential expression analyses of RNA-seq data from ATAF1 overexpressor, ataf1 mutant and wild-type plants after heat priming revealed five genes that might be priming-associated direct targets of ATAF1: AT2G31260 (ATG9), AT2G41640 (GT61), AT3G44990 (XTH31), AT4G27720 and AT3G23540. Based on co-expression analyses applied to the aforementioned RNA-seq profiles, we identified ANAC055 to be transcriptionally co-regulated with ATAF1. Like atafl, anac055 mutants show improved thermomemory, revealing a potential co-control of both NACTFs over thermomemory. Our data reveals a core importance of two NAC transcription factors, ATAF1 and ANAC055, for thermomemory. Y1 - 2022 U6 - https://doi.org/10.1038/s41598-022-14429-x SN - 2045-2322 VL - 12 IS - 1 PB - Nature Research CY - Berlin ER - TY - JOUR A1 - Thirumalaikumar, Venkatesh P. A1 - Gorka, Michal A1 - Schulz, Karina A1 - Masclaux-Daubresse, Celine A1 - Sampathkumar, Arun A1 - Skirycz, Aleksandra A1 - Vierstra, Richard D. A1 - Balazadeh, Salma T1 - Selective autophagy regulates heat stress memory in Arabidopsis by NBR1-mediated targeting of HSP90.1 and ROF1 JF - Autophagy N2 - In nature, plants are constantly exposed to many transient, but recurring, stresses. Thus, to complete their life cycles, plants require a dynamic balance between capacities to recover following cessation of stress and maintenance of stress memory. Recently, we uncovered a new functional role for macroautophagy/autophagy in regulating recovery from heat stress (HS) and resetting cellular memory of HS inArabidopsis thaliana. Here, we demonstrated that NBR1 (next to BRCA1 gene 1) plays a crucial role as a receptor for selective autophagy during recovery from HS. Immunoblot analysis and confocal microscopy revealed that levels of the NBR1 protein, NBR1-labeled puncta, and NBR1 activity are all higher during the HS recovery phase than before. Co-immunoprecipitation analysis of proteins interacting with NBR1 and comparative proteomic analysis of annbr1-null mutant and wild-type plants identified 58 proteins as potential novel targets of NBR1. Cellular, biochemical and functional genetic studies confirmed that NBR1 interacts with HSP90.1 (heat shock protein 90.1) and ROF1 (rotamase FKBP 1), a member of the FKBP family, and mediates their degradation by autophagy, which represses the response to HS by attenuating the expression ofHSPgenes regulated by the HSFA2 transcription factor. Accordingly, loss-of-function mutation ofNBR1resulted in a stronger HS memory phenotype. Together, our results provide new insights into the mechanistic principles by which autophagy regulates plant response to recurrent HS. KW - Arabidopsis thaliana KW - heat stress KW - HSFA2 KW - HSP90.1 KW - NBR1 KW - ROF1 KW - selective autophagy KW - stress memory KW - stress recovery Y1 - 2020 U6 - https://doi.org/10.1080/15548627.2020.1820778 SN - 1554-8635 VL - 17 IS - 9 SP - 2184 EP - 2199 PB - Taylor & Francis CY - Abingdon ER - TY - GEN A1 - Pajoro, Alice A1 - Madrigal, Pedro A1 - Muiño, Jose M. A1 - Matus, José Tomás A1 - Jin, Jian A1 - Mecchia, Martin A. A1 - Debernardi, Juan M. A1 - Palatnik, Javier F. A1 - Balazadeh, Salma A1 - Arif, Muhammad A1 - Ó’Maoiléidigh, Diarmuid S. A1 - Wellmer, Frank A1 - Krajewski, Pawel A1 - Riechmann, José-Luis A1 - Angenent, Gerco C. A1 - Kaufmann, Kerstin T1 - Dynamics of chromatin accessibility and gene regulation by MADS-domain transcription factors in flower development T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Background: Development of eukaryotic organisms is controlled by transcription factors that trigger specific and global changes in gene expression programs. In plants, MADS-domain transcription factors act as master regulators of developmental switches and organ specification. However, the mechanisms by which these factors dynamically regulate the expression of their target genes at different developmental stages are still poorly understood. Results: We characterized the relationship of chromatin accessibility, gene expression, and DNA binding of two MADS-domain proteins at different stages of Arabidopsis flower development. Dynamic changes in APETALA1 and SEPALLATA3 DNA binding correlated with changes in gene expression, and many of the target genes could be associated with the developmental stage in which they are transcriptionally controlled. We also observe dynamic changes in chromatin accessibility during flower development. Remarkably, DNA binding of APETALA1 and SEPALLATA3 is largely independent of the accessibility status of their binding regions and it can precede increases in DNA accessibility. These results suggest that APETALA1 and SEPALLATA3 may modulate chromatin accessibility, thereby facilitating access of other transcriptional regulators to their target genes. Conclusions: Our findings indicate that different homeotic factors regulate partly overlapping, yet also distinctive sets of target genes in a partly stage-specific fashion. By combining the information from DNA-binding and gene expression data, we are able to propose models of stage-specific regulatory interactions, thereby addressing dynamics of regulatory networks throughout flower development. Furthermore, MADS-domain TFs may regulate gene expression by alternative strategies, one of which is modulation of chromatin accessibility. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1327 KW - flower development KW - floral organ KW - floral meristem KW - chromatin accessibility KW - growth regulate factor Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-431139 SN - 1866-8372 VL - 15 ER - TY - JOUR A1 - Shubchynskyy, Volodymyr A1 - Boniecka, Justyna A1 - Schweighofer, Alois A1 - Simulis, Justinas A1 - Kvederaviciute, Kotryna A1 - Stumpe, Michael A1 - Mauch, Felix A1 - Balazadeh, Salma A1 - Müller-Röber, Bernd A1 - Boutrot, Freddy A1 - Zipfel, Cyril A1 - Meskiene, Irute T1 - Protein phosphatase AP2C1 negatively regulates basal resistance and defense responses to Pseudomonas syringae JF - Journal of experimental botany N2 - Mitogen-activated protein kinases (MAPKs) mediate plant immune responses to pathogenic bacteria. However, less is known about the cell autonomous negative regulatory mechanism controlling basal plant immunity. We report the biological role of Arabidopsis thaliana MAPK phosphatase AP2C1 as a negative regulator of plant basal resistance and defense responses to Pseudomonas syringae. AP2C2, a closely related MAPK phosphatase, also negatively controls plant resistance. Loss of AP2C1 leads to enhanced pathogen-induced MAPK activities, increased callose deposition in response to pathogen-associated molecular patterns or to P. syringae pv. tomato (Pto) DC3000, and enhanced resistance to bacterial infection with Pto. We also reveal the impact of AP2C1 on the global transcriptional reprogramming of transcription factors during Pto infection. Importantly, ap2c1 plants show salicylic acid-independent transcriptional reprogramming of several defense genes and enhanced ethylene production in response to Pto. This study pinpoints the specificity of MAPK regulation by the different MAPK phosphatases AP2C1 and MKP1, which control the same MAPK substrates, nevertheless leading to different downstream events. We suggest that precise and specific control of defined MAPKs by MAPK phosphatases during plant challenge with pathogenic bacteria can strongly influence plant resistance. KW - Callose KW - defense genes KW - MAPK KW - MAPK phosphatase KW - PAMP KW - PP2C phosphatase KW - Pseudomonas syringae KW - salicylic acid KW - transcription factors Y1 - 2017 U6 - https://doi.org/10.1093/jxb/erw485 SN - 0022-0957 SN - 1460-2431 VL - 68 IS - 5 SP - 1169 EP - 1183 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Shahnejat-Bushehri, Sara A1 - Allu, Annapurna Devi A1 - Mehterov, Nikolay A1 - Thirumalaikumar, Venkatesh P. A1 - Alseekh, Saleh A1 - Fernie, Alisdair R. A1 - Mueller-Roeber, Bernd A1 - Balazadeh, Salma T1 - Arabidopsis NAC Transcription Factor JUNGBRUNNEN1 Exerts Conserved Control Over Gibberellin and Brassinosteroid Metabolism and Signaling Genes in Tomato JF - Frontiers in plant science N2 - The Arabidopsis thaliana NAC transcription factor JUNGBRUNNEN1 (AtJUB1) regulates growth by directly repressing GA3ox1 and DWF4, two key genes involved in gibberellin (GA) and brassinosteroid (BR) biosynthesis, respectively, leading to GA and BR deficiency phenotypes. AtJUB1 also reduces the expression of PIF4, a bHLH transcription factor that positively controls cell elongation, while it stimulates the expression of DELLA genes, which are important repressors of growth. Here, we extend our previous findings by demonstrating that AtJUB1 induces similar GA and BR deficiency phenotypes and changes in gene expression when overexpressed in tomato (Solanum lycopersicum). Importantly, and in accordance with the growth phenotypes observed, AtJUB1 inhibits the expression of growth-supporting genes, namely the tomato orthologs of GA3ox1, DWF4 and PIF4, but activates the expression of DELLA orthologs, by directly binding to their promoters. Overexpression of AtJUB1 in tomato delays fruit ripening, which is accompanied by reduced expression of several ripeningrelated genes, and leads to an increase in the levels of various amino acids (mostly proline, beta-alanine, and phenylalanine), gamma-aminobutyric acid (GABA), and major organic acids including glutamic acid and aspartic acid. The fact that AtJUB1 exerts an inhibitory effect on the GA/BR biosynthesis and PIF4 genes but acts as a direct activator of DELLA genes in both, Arabidopsis and tomato, strongly supports the model that the molecular constituents of the JUNGBRUNNEN1 growth control module are considerably conserved across species. KW - Arabidopsis KW - tomato KW - fruit KW - growth KW - transcription factor KW - gibberellic acid KW - brassinosteroid KW - DELLA proteins Y1 - 2017 U6 - https://doi.org/10.3389/fpls.2017.00214 SN - 1664-462X VL - 8 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Watanabe, Mutsumi A1 - Tohge, Takayuki A1 - Balazadeh, Salma A1 - Erban, Alexander A1 - Giavalisco, Patrick A1 - Kopka, Joachim A1 - Mueller-Roeber, Bernd A1 - Fernie, Alisdair R. A1 - Hoefgen, Rainer T1 - Comprehensive Metabolomics Studies of Plant Developmental Senescence JF - Plant Senescence: Methods and Protocols N2 - Leaf senescence is an essential developmental process that involves diverse metabolic changes associated with degradation of macromolecules allowing nutrient recycling and remobilization. In contrast to the significant progress in transcriptomic analysis of leaf senescence, metabolomics analyses have been relatively limited. A broad overview of metabolic changes during leaf senescence including the interactions between various metabolic pathways is required to gain a better understanding of the leaf senescence allowing to link transcriptomics with metabolomics and physiology. In this chapter, we describe how to obtain comprehensive metabolite profiles and how to dissect metabolic shifts during leaf senescence in the model plant Arabidopsis thaliana. Unlike nucleic acid analysis for transcriptomics, a comprehensive metabolite profile can only be achieved by combining a suite of analytic tools. Here, information is provided for measurements of the contents of chlorophyll, soluble proteins, and starch by spectrophotometric methods, ions by ion chromatography, thiols and amino acids by HPLC, primary metabolites by GC/TOF-MS, and secondary metabolites and lipophilic metabolites by LC/ESI-MS. These metabolite profiles provide a rich catalogue of metabolic changes during leaf senescence, which is a helpful database and blueprint to be correlated to future studies such as transcriptome and proteome analyses, forward and reverse genetic studies, or stress-induced senescence studies. KW - Senescence KW - Metabolomics KW - Arabidopsis KW - GC/MS KW - LC/MS KW - HPLC KW - IC Y1 - 2018 SN - 978-1-4939-7672-0 SN - 978-1-4939-7670-6 U6 - https://doi.org/10.1007/978-1-4939-7672-0_28 SN - 1064-3745 SN - 1940-6029 VL - 1744 SP - 339 EP - 358 PB - Humana Press CY - Totowa ER - TY - JOUR A1 - Thirumalaikumar, Venkatesh P. A1 - Devkar, Vikas A1 - Mehterov, Nikolay A1 - Ali, Shawkat A1 - Ozgur, Rengin A1 - Turkan, Ismail A1 - Müller-Röber, Bernd A1 - Balazadeh, Salma T1 - NAC transcription factor JUNGBRUNNEN1 enhances drought tolerance in tomato JF - Plant Biotechnology Journal N2 - Water deficit (drought stress) massively restricts plant growth and the yield of crops; reducing the deleterious effects of drought is therefore of high agricultural relevance. Drought triggers diverse cellular processes including the inhibition of photosynthesis, the accumulation of cell-damaging reactive oxygen species and gene expression reprogramming, besides others. Transcription factors (TF) are central regulators of transcriptional reprogramming and expression of many TF genes is affected by drought, including members of the NAC family. Here, we identify the NAC factor JUNGBRUNNEN1 (JUB1) as a regulator of drought tolerance in tomato (Solanum lycopersicum). Expression of tomato JUB1 (SlJUB1) is enhanced by various abiotic stresses, including drought. Inhibiting SlJUB1 by virus-induced gene silencing drastically lowers drought tolerance concomitant with an increase in ion leakage, an elevation of hydrogen peroxide (H2O2) levels and a decrease in the expression of various drought-responsive genes. In contrast, overexpression of AtJUB1 from Arabidopsis thaliana increases drought tolerance in tomato, alongside with a higher relative leaf water content during drought and reduced H2O2 levels. AtJUB1 was previously shown to stimulate expression of DREB2A, a TF involved in drought responses, and of the DELLA genes GAI and RGL1. We show here that SlJUB1 similarly controls the expression of the tomato orthologs SlDREB1, SlDREB2 and SlDELLA. Furthermore, AtJUB1 directly binds to the promoters of SlDREB1, SlDREB2 and SlDELLA in tomato. Our study highlights JUB1 as a transcriptional regulator of drought tolerance and suggests considerable conservation of the abiotic stress-related gene regulatory networks controlled by this NAC factor between Arabidopsis and tomato. KW - Arabidopsis KW - tomato KW - transcription factor KW - drought KW - reactive oxygen species KW - DELLA Y1 - 2017 U6 - https://doi.org/10.1111/pbi.12776 SN - 1467-7644 SN - 1467-7652 VL - 16 IS - 2 SP - 354 EP - 366 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Kamranfar, Iman A1 - Xue, Gang-Ping A1 - Tohge, Takayuki A1 - Sedaghatmehr, Mastoureh A1 - Fernie, Alisdair R. A1 - Balazadeh, Salma A1 - Mueller-Roeber, Bernd T1 - Transcription factor RD26 is a key regulator of metabolic reprogramming during dark-induced senescence JF - New phytologist : international journal of plant science N2 - Leaf senescence is a key process in plants that culminates in the degradation of cellular constituents and massive reprogramming of metabolism for the recovery of nutrients from aged leaves for their reuse in newly developing sinks. We used molecular-biological and metabolomics approaches to identify NAC transcription factor (TF) RD26 as an important regulator of metabolic reprogramming in Arabidopsis thaliana. RD26 directly activates CHLOROPLAST VESICULATION (CV), encoding a protein crucial for chloroplast protein degradation, concomitant with an enhanced protein loss in RD26 over-expressors during senescence, but a reduced decline of protein in rd26 knockout mutants. RD26 also directly activates LKR/SDH involved in lysine catabolism, and PES1 important for phytol degradation. Metabolic profiling revealed reduced c-aminobutyric acid (GABA) in RD26 overexpressors, accompanied by the induction of respective catabolic genes. Degradation of lysine, phytol and GABA is instrumental for maintaining mitochondrial respiration in carbon-limiting conditions during senescence. RD26 also supports the degradation of starch and the accumulation of mono-and disaccharides during senescence by directly enhancing the expression of AMY1, SFP1 and SWEET15 involved in carbohydrate metabolism and transport. Collectively, during senescence RD26 acts by controlling the expression of genes across the entire spectrum of the cellular degradation hierarchy. KW - Arabidopsis KW - fatty acid KW - primary metabolism KW - protein and amino acid degradation KW - respiration KW - senescence Y1 - 2018 U6 - https://doi.org/10.1111/nph.15127 SN - 0028-646X SN - 1469-8137 VL - 218 IS - 4 SP - 1543 EP - 1557 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Omidbakhshfard, Mohammad Amin A1 - Fujikura, Ushio A1 - Olas, Justyna Jadwiga A1 - Xue, Gang-Ping A1 - Balazadeh, Salma A1 - Mueller-Roeber, Bernd T1 - GROWTH-REGULATING FACTOR 9 negatively regulates arabidopsis leaf growth by controlling ORG3 and restricting cell proliferation in leaf primordia JF - PLoS Genetics : a peer-reviewed, open-access journal N2 - Leaf growth is a complex process that involves the action of diverse transcription factors (TFs) and their downstream gene regulatory networks. In this study, we focus on the functional characterization of the Arabidopsis thaliana TF GROWTH-REGULATING FACTOR9 (GRF9) and demonstrate that it exerts its negative effect on leaf growth by activating expression of the bZIP TF OBP3-RESPONSIVE GENE 3 (ORG3). While grf9 knockout mutants produce bigger incipient leaf primordia at the shoot apex, rosette leaves and petals than the wild type, the sizes of those organs are reduced in plants overexpressing GRF9 (GRF9ox). Cell measurements demonstrate that changes in leaf size result from alterations in cell numbers rather than cell sizes. Kinematic analysis and 5-ethynyl-2'-deoxyuridine (EdU) incorporation assay revealed that GRF9 restricts cell proliferation in the early developing leaf. Performing in vitro binding site selection, we identified the 6-base motif 5'-CTGACA-3' as the core binding site of GRF9. By global transcriptome profiling, electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) we identified ORG3 as a direct downstream, and positively regulated target of GRF9. Genetic analysis of grf9 org3 and GRF9ox org3 double mutants reveals that both transcription factors act in a regulatory cascade to control the final leaf dimensions by restricting cell number in the developing leaf. Y1 - 2018 U6 - https://doi.org/10.1371/journal.pgen.1007484 SN - 1553-7404 VL - 14 IS - 7 PB - PLoS CY - San Fransisco ER -