TY - JOUR A1 - Pratt, Jane A1 - Busse, Angela A1 - Mueller, W-C A1 - Watkins, Nikolas W. A1 - Chapman, Sandra C. T1 - Extreme-value statistics from Lagrangian convex hull analysis for homogeneous turbulent Boussinesq convection and MHD convection JF - New journal of physics : the open-access journal for physics N2 - We investigate the utility of the convex hull of many Lagrangian tracers to analyze transport properties of turbulent flows with different anisotropy. In direct numerical simulations of statistically homogeneous and stationary Navier-Stokes turbulence, neutral fluid Boussinesq convection, and MHD Boussinesq convection a comparison with Lagrangian pair dispersion shows that convex hull statistics capture the asymptotic dispersive behavior of a large group of passive tracer particles. Moreover, convex hull analysis provides additional information on the sub-ensemble of tracers that on average disperse most efficiently in the form of extreme value statistics and flow anisotropy via the geometric properties of the convex hulls. We use the convex hull surface geometry to examine the anisotropy that occurs in turbulent convection. Applying extreme value theory, we show that the maximal square extensions of convex hull vertices are well described by a classic extreme value distribution, the Gumbel distribution. During turbulent convection, intermittent convective plumes grow and accelerate the dispersion of Lagrangian tracers. Convex hull analysis yields information that supplements standard Lagrangian analysis of coherent turbulent structures and their influence on the global statistics of the flow. KW - turbulence KW - magnetohydrodynamics KW - Lagrangian statistics KW - magnetoconvection KW - turbulent transport Y1 - 2017 U6 - https://doi.org/10.1088/1367-2630/aa6fe8 SN - 1367-2630 VL - 19 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Feudel, Fred A1 - Tuckerman, L. S. A1 - Gellert, Marcus A1 - Seehafer, Norbert T1 - Bifurcations of rotating waves in rotating spherical shell convection JF - Physical Review E N2 - The dynamics and bifurcations of convective waves in rotating and buoyancy-driven spherical Rayleigh-Benard convection are investigated numerically. The solution branches that arise as rotating waves (RWs) are traced by means of path-following methods, by varying the Rayleigh number as a control parameter for different rotation rates. The dependence of the azimuthal drift frequency of the RWs on the Ekman and Rayleigh numbers is determined and discussed. The influence of the rotation rate on the generation and stability of secondary branches is demonstrated. Multistability is typical in the parameter range considered. KW - nonsymmetric linear-systems KW - thermal-convection KW - fluid shells KW - hopf-bifurcation KW - onset KW - magnetoconvection KW - number KW - flow Y1 - 2015 U6 - https://doi.org/10.1103/PhysRevE.92.053015 SN - 1539-3755 SN - 1550-2376 VL - 92 IS - 5 PB - American Physical Society CY - Woodbury ER -