TY - JOUR A1 - Wang, Wei A1 - Cherstvy, Andrey G. A1 - Kantz, Holger A1 - Metzler, Ralf A1 - Sokolov, Igor M. T1 - Time averaging and emerging nonergodicity upon resetting of fractional Brownian motion and heterogeneous diffusion processes JF - Physical review : E, Statistical, nonlinear and soft matter physics N2 - How different are the results of constant-rate resetting of anomalous-diffusion processes in terms of their ensemble-averaged versus time-averaged mean-squared displacements (MSDs versus TAMSDs) and how does stochastic resetting impact nonergodicity? We examine, both analytically and by simulations, the implications of resetting on the MSD- and TAMSD-based spreading dynamics of particles executing fractional Brownian motion (FBM) with a long-time memory, heterogeneous diffusion processes (HDPs) with a power-law space-dependent diffusivity D(x) = D0|x|gamma and their "combined" process of HDP-FBM. We find, inter alia, that the resetting dynamics of originally ergodic FBM for superdiffusive Hurst exponents develops disparities in scaling and magnitudes of the MSDs and mean TAMSDs indicating weak ergodicity breaking. For subdiffusive HDPs we also quantify the nonequivalence of the MSD and TAMSD and observe a new trimodal form of the probability density function. For reset FBM, HDPs and HDP-FBM we compute analytically and verify by simulations the short-time MSD and TAMSD asymptotes and long-time plateaus reminiscent of those for processes under confinement. We show that certain characteristics of these reset processes are functionally similar despite a different stochastic nature of their nonreset variants. Importantly, we discover nonmonotonicity of the ergodicitybreaking parameter EB as a function of the resetting rate r. For all reset processes studied we unveil a pronounced resetting-induced nonergodicity with a maximum of EB at intermediate r and EB similar to(1/r )-decay at large r. Alongside the emerging MSD-versus-TAMSD disparity, this r-dependence of EB can be an experimentally testable prediction. We conclude by discussing some implications to experimental systems featuring resetting dynamics. Y1 - 2021 U6 - https://doi.org/10.1103/PhysRevE.104.024105 SN - 2470-0045 SN - 2470-0053 VL - 104 IS - 2 PB - American Institute of Physics CY - Woodbury, NY ER - TY - JOUR A1 - Kurilovich, Aleksandr A. A1 - Mantsevich, Vladimir N. A1 - Mardoukhi, Yousof A1 - Stevenson, Keith J. A1 - Chechkin, Aleksei A1 - Palyulin, Vladimir V. T1 - Non-Markovian diffusion of excitons in layered perovskites and transition metal dichalcogenides JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - The diffusion of excitons in perovskites and transition metal dichalcogenides shows clear anomalous, subdiffusive behaviour in experiments. In this paper we develop a non-Markovian mobile-immobile model which provides an explanation of this behaviour through paired theoretical and simulation approaches. The simulation model is based on a random walk on a 2D lattice with randomly distributed deep traps such that the trapping time distribution involves slowly decaying power-law asymptotics. The theoretical model uses coupled diffusion and rate equations for free and trapped excitons, respectively, with an integral term responsible for trapping. The model provides a good fitting of the experimental data, thus, showing a way for quantifying the exciton diffusion dynamics. Y1 - 2022 U6 - https://doi.org/10.1039/d2cp00557c SN - 1463-9076 SN - 1463-9084 VL - 24 IS - 22 SP - 13941 EP - 13950 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Grischek, Max A1 - Caprioglio, Pietro A1 - Zhang, Jiahuan A1 - Pena-Camargo, Francisco A1 - Sveinbjornsson, Kari A1 - Zu, Fengshuo A1 - Menzel, Dorothee A1 - Warby, Jonathan H. A1 - Li, Jinzhao A1 - Koch, Norbert A1 - Unger, Eva A1 - Korte, Lars A1 - Neher, Dieter A1 - Stolterfoht, Martin A1 - Albrecht, Steve T1 - Efficiency Potential and Voltage Loss of Inorganic CsPbI2Br Perovskite Solar Cells JF - Solar RRL N2 - Inorganic perovskite solar cells show excellent thermal stability, but the reported power conversion efficiencies are still lower than for organic-inorganic perovskites. This is mainly caused by lower open-circuit voltages (V(OC)s). Herein, the reasons for the low V-OC in inorganic CsPbI2Br perovskite solar cells are investigated. Intensity-dependent photoluminescence measurements for different layer stacks reveal that n-i-p and p-i-n CsPbI2Br solar cells exhibit a strong mismatch between quasi-Fermi level splitting (QFLS) and V-OC. Specifically, the CsPbI2Br p-i-n perovskite solar cell has a QFLS-e center dot V-OC mismatch of 179 meV, compared with 11 meV for a reference cell with an organic-inorganic perovskite of similar bandgap. On the other hand, this study shows that the CsPbI2Br films with a bandgap of 1.9 eV have a very low defect density, resulting in an efficiency potential of 20.3% with a MeO-2PACz hole-transporting layer and 20.8% on compact TiO2. Using ultraviolet photoelectron spectroscopy measurements, energy level misalignment is identified as a possible reason for the QFLS-e center dot V-OC mismatch and strategies for overcoming this V-OC limitation are discussed. This work highlights the need to control the interfacial energetics in inorganic perovskite solar cells, but also gives promise for high efficiencies once this issue is resolved. KW - CsPbI2Br KW - efficiency potentials KW - inorganic perovskites KW - photoluminescence KW - solar cells KW - voltage losses Y1 - 2022 U6 - https://doi.org/10.1002/solr.202200690 SN - 2367-198X VL - 6 IS - 11 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Lepri, Stefano A1 - Pikovsky, Arkady T1 - Phase-locking dynamics of heterogeneous oscillator arrays JF - Chaos, solitons & fractals : applications in science and engineering ; an interdisciplinary journal of nonlinear science N2 - We consider an array of nearest-neighbor coupled nonlinear autonomous oscillators with quenched ran-dom frequencies and purely conservative coupling. We show that global phase-locked states emerge in finite lattices and study numerically their destruction. Upon change of model parameters, such states are found to become unstable with the generation of localized periodic and chaotic oscillations. For weak nonlinear frequency dispersion, metastability occur akin to the case of almost-conservative systems. We also compare the results with the phase-approximation in which the amplitude dynamics is adiabatically eliminated. KW - Ginzburg-Landau lattice KW - Disorder KW - Localized chaos KW - Reactive coupling Y1 - 2022 U6 - https://doi.org/10.1016/j.chaos.2021.111721 SN - 0960-0779 SN - 1873-2887 VL - 155 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Morris, Paul J. A1 - Bohdan, Artem A1 - Weidl, Martin S. A1 - Tsirou, Michelle A1 - Fulat, Karol A1 - Pohl, Martin T1 - Pre-acceleration in the electron foreshock. II. oblique whistler waves JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - Thermal electrons have gyroradii many orders of magnitude smaller than the finite width of a shock, thus need to be pre-accelerated before they can cross it and be accelerated by diffusive shock acceleration. One region where pre-acceleration may occur is the inner foreshock, which upstream electrons must pass through before any potential downstream crossing. In this paper, we perform a large-scale particle-in-cell simulation that generates a single shock with parameters motivated from supernova remnants. Within the foreshock, reflected electrons excite the oblique whistler instability and produce electromagnetic whistler waves, which comove with the upstream flow and as nonlinear structures eventually reach radii of up to 5 ion-gyroradii. We show that the inner electromagnetic configuration of the whistlers evolves into complex nonlinear structures bound by a strong magnetic field around four times the upstream value. Although these nonlinear structures do not in general interact with cospatial upstream electrons, they resonate with electrons that have been reflected at the shock. We show that they can scatter, or even trap, reflected electrons, confining around 0.8% of the total upstream electron population to the region close to the shock where they can undergo substantial pre-acceleration. This acceleration process is similar to, yet approximately three times more efficient than, stochastic shock drift acceleration. Y1 - 2023 U6 - https://doi.org/10.3847/1538-4357/acaec8 SN - 0004-637X SN - 1538-4357 VL - 944 IS - 1 PB - Institute of Physics Publ. CY - London ER - TY - JOUR A1 - Pena-Camargo, Francisco A1 - Thiesbrummel, Jarla A1 - Hempel, Hannes A1 - Musiienko, Artem A1 - Le Corre, Vincent M. A1 - Diekmann, Jonas A1 - Warby, Jonathan A1 - Unold, Thomas A1 - Lang, Felix A1 - Neher, Dieter A1 - Stolterfoht, Martin T1 - Revealing the doping density in perovskite solar cells and its impact on device performance JF - Applied physics reviews N2 - Traditional inorganic semiconductors can be electronically doped with high precision. Conversely, there is still conjecture regarding the assessment of the electronic doping density in metal-halide perovskites, not to mention of a control thereof. This paper presents a multifaceted approach to determine the electronic doping density for a range of different lead-halide perovskite systems. Optical and electrical characterization techniques, comprising intensity-dependent and transient photoluminescence, AC Hall effect, transfer-length-methods, and charge extraction measurements were instrumental in quantifying an upper limit for the doping density. The obtained values are subsequently compared to the electrode charge per cell volume under short-circuit conditions ( CUbi/eV), which amounts to roughly 10(16) cm(-3). This figure of merit represents the critical limit below which doping-induced charges do not influence the device performance. The experimental results consistently demonstrate that the doping density is below this critical threshold 10(12) cm(-3), which means << CUbi / e V) for all common lead-based metal-halide perovskites. Nevertheless, although the density of doping-induced charges is too low to redistribute the built-in voltage in the perovskite active layer, mobile ions are present in sufficient quantities to create space-charge-regions in the active layer, reminiscent of doped pn-junctions. These results are well supported by drift-diffusion simulations, which confirm that the device performance is not affected by such low doping densities. Y1 - 2022 U6 - https://doi.org/10.1063/5.0085286 SN - 1931-9401 VL - 9 IS - 2 PB - AIP Publishing CY - Melville ER - TY - JOUR A1 - Dudi, Reetika A1 - Dietrich, Tim A1 - Rashti, Alireza A1 - Brügmann, Bernd A1 - Steinhoff, Jan A1 - Tichy, Wolfgang T1 - High-accuracy simulations of highly spinning binary neutron star systems JF - Physical review : D, Particles, fields, gravitation, and cosmology N2 - With an increasing number of expected gravitational-wave detections of binary neutron star mergers, it is essential that gravitational-wave models employed for the analysis of observational data are able to describe generic compact binary systems. This includes systems in which the individual neutron stars are millisecond pulsars for which spin effects become essential. In this work, we perform numerical-relativity simulations of binary neutron stars with aligned and antialigned spins within a range of dimensionless spins of chi similar to [-0.28, 0.58]. The simulations are performed with multiple resolutions, show a clear convergence order and, consequently, can be used to test existing waveform approximants. We find that for very high spins gravitational-wave models that have been employed for the interpretation of GW170817 and GW190425 arc not capable of describing our numerical-relativity dataset. We verify through a full parameter estimation study in which clear biases in the estimate of the tidal deformability and effective spin are present. We hope that in preparation of the next gravitational-wave observing run of the Advanced LIGO and Advanced Virgo detectors our new set of numerical-relativity data can be used to support future developments of new gravitational-wave models. Y1 - 2022 U6 - https://doi.org/10.1103/PhysRevD.105.064050 SN - 2470-0010 SN - 2470-0029 VL - 105 IS - 6 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Pohl, Martin A1 - Macias, Oscar A1 - Coleman, Phaedra A1 - Gordon, Chris T1 - Assessing the impact of hydrogen absorption on the characteristics of the Galactic center excess JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - We present a new reconstruction of the distribution of atomic hydrogen in the inner Galaxy that is based on explicit radiation transport modeling of line and continuum emission and a gas-flow model in the barred Galaxy that provides distance resolution for lines of sight toward the Galactic center. The main benefits of the new gas model are (a) the ability to reproduce the negative line signals seen with the HI4PI survey and (b) the accounting for gas that primarily manifests itself through absorption. We apply the new model of Galactic atomic hydrogen to an analysis of the diffuse gamma-ray emission from the inner Galaxy, for which an excess at a few GeV was reported that may be related to dark matter. We find with high significance an improved fit to the diffuse gamma-ray emission observed with the Fermi-LAT, if our new H i model is used to estimate the cosmic-ray induced diffuse gamma-ray emission. The fit still requires a nuclear bulge at high significance. Once this is included there is no evidence of a dark-matter signal, be it cuspy or cored. But an additional so-called boxy bulge is still favored by the data. This finding is robust under the variation of various parameters, for example, the excitation temperature of atomic hydrogen, and a number of tests for systematic issues. Y1 - 2022 U6 - https://doi.org/10.3847/1538-4357/ac6032 SN - 0004-637X SN - 1538-4357 VL - 929 IS - 2 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Mishurova, Tatiana A1 - Stegemann, Robert A1 - Lyamkin, Viktor A1 - Cabeza, Sandra A1 - Evsevleev, Sergei A1 - Pelkner, Matthias A1 - Bruno, Giovanni T1 - Subsurface and bulk residual stress analysis of S235JRC+C Steel TIG weld by diffraction and magnetic stray field measurements JF - Experimental mechanics : an international journal of the Society for Experimental Mechanics N2 - Background Due to physical coupling between mechanical stress and magnetization in ferromagnetic materials, it is assumed in the literature that the distribution of the magnetic stray field corresponds to the internal (residual) stress of the specimen. The correlation is, however, not trivial, since the magnetic stray field is also influenced by the microstructure and the geometry of component. The understanding of the correlation between residual stress and magnetic stray field could help to evaluate the integrity of welded components. Objective This study aims at understanding the possible correlation of subsurface and bulk residual stress with magnetic stray field in a low carbon steel weld. Methods The residual stress was determined by synchrotron X-ray diffraction (SXRD, subsurface region) and by neutron diffraction (ND, bulk region). SXRD possesses a higher spatial resolution than ND. Magnetic stray fields were mapped by utilizing high-spatial-resolution giant magneto resistance (GMR) sensors. Results The subsurface residual stress overall correlates better with the magnetic stray field distribution than the bulk stress. This correlation is especially visible in the regions outside the heat affected zone, where the influence of the microstructural features is less pronounced but steep residual stress gradients are present. Conclusions It was demonstrated that the localized stray field sources without any obvious microstructural variations are associated with steep stress gradients. The good correlation between subsurface residual stress and magnetic signal indicates that the source of the magnetic stray fields is to be found in the range of the penetration depth of the SXRD measurements. KW - residual stress KW - magnetic stray field KW - synchrotron X-ray diffraction KW - neutron diffraction KW - TIG-welding Y1 - 2022 U6 - https://doi.org/10.1007/s11340-022-00841-x SN - 0014-4851 SN - 1741-2765 VL - 62 IS - 6 SP - 1017 EP - 1025 PB - Springer CY - New York ER - TY - JOUR A1 - Ashton, Gregory A1 - Dietrich, Tim T1 - The use of hypermodels to understand binary neutron star collisions JF - Nature astronomy N2 - Gravitational waves from the collision of binary neutron stars provide a unique opportunity to study the behaviour of supranuclear matter, the fundamental properties of gravity and the cosmic history of our Universe. However, given the complexity of Einstein's field equations, theoretical models that enable source-property inference suffer from systematic uncertainties due to simplifying assumptions. We develop a hypermodel approach to compare and measure the uncertainty of gravitational-wave approximants. Using state-of-the-art models, we apply this new technique to the binary neutron star observations GW170817 and GW190425 and to the sub-threshold candidate GW200311_103121. Our analysis reveals subtle systematic differences (with Bayesian odds of similar to 2) between waveform models. A frequency-dependence study suggests that this may be due to the treatment of the tidal sector. This new technique provides a proving ground for model development and a means to identify waveform systematics in future observing runs where detector improvements will increase the number and clarity of binary neutron star collisions we observe. Y1 - 2022 U6 - https://doi.org/10.1038/s41550-022-01707-x SN - 2397-3366 VL - 6 IS - 8 SP - 961 EP - 967 PB - Nature portfolio CY - Berlin ER -