TY - JOUR A1 - Dahlenburg, Marcus A1 - Chechkin, Aleksei A1 - Schumer, Rina A1 - Metzler, Ralf T1 - Stochastic resetting by a random amplitude JF - Physical review : E, Statistical, nonlinear and soft matter physics N2 - Stochastic resetting, a diffusive process whose amplitude is reset to the origin at random times, is a vividly studied strategy to optimize encounter dynamics, e.g., in chemical reactions. Here we generalize the resetting step by introducing a random resetting amplitude such that the diffusing particle may be only partially reset towards the trajectory origin or even overshoot the origin in a resetting step. We introduce different scenarios for the random-amplitude stochastic resetting process and discuss the resulting dynamics. Direct applications are geophysical layering (stratigraphy) and population dynamics or financial markets, as well as generic search processes. Y1 - 2021 U6 - https://doi.org/10.1103/PhysRevE.103.052123 SN - 2470-0045 SN - 2470-0053 VL - 103 IS - 5 PB - American Physical Society CY - Woodbury, NY ER - TY - JOUR A1 - Petreska, Irina A1 - Sandev, Trifce A1 - Lenzi, Ervin Kaminski T1 - Comb-like geometric constraints leading to emergence of the time-fractional Schrödinger equation JF - Modern physics letters : A, Particles and fields, gravitation, cosmology, nuclear physics N2 - This paper presents an overview over several examples, where the comb-like geometric constraints lead to emergence of the time-fractional Schrodinger equation. Motion of a quantum object on a comb structure is modeled by a suitable modification of the kinetic energy operator, obtained by insertion of the Dirac delta function in the Laplacian. First, we consider motion of a free particle on two- and three-dimensional comb structures, and then we extend the study to the interacting cases. A general form of a nonlocal term, which describes the interactions of the particle with the medium, is included in the Hamiltonian, and later on, the cases of constant and Dirac delta potentials are analyzed. At the end, we discuss the case of non-integer dimensions, considering separately the case of fractal dimension between one and two, and the case of fractal dimension between two and three. All these examples show that even though we are starting with the standard time-dependent Schrodinger equation on a comb, the time-fractional equation for the Green's functions appears, due to these specific geometric constraints. KW - Comb model KW - time-fractional Schrödinger equation KW - Green’ s functions Y1 - 2021 U6 - https://doi.org/10.1142/S0217732321300056 SN - 0217-7323 SN - 1793-6632 VL - 36 IS - 14 PB - World Scientific CY - Singapore ER - TY - JOUR A1 - Saikin, Anthony A1 - Shprits, Yuri Y. A1 - Drozdov, Alexander A1 - Landis, Daji August A1 - Zhelavskaya, Irina A1 - Cervantes Villa, Juan Sebastian T1 - Reconstruction of the radiation belts for solar cycles 17-24 (1933-2017) JF - Space weather : the international journal of research and applications N2 - We present a reconstruction of the dynamics of the radiation belts from solar cycles 17 to 24 which allows us to study how radiation belt activity has varied between the different solar cycles. The radiation belt simulations are produced using the Versatile Electron Radiation Belt (VERB)-3D code. The VERB-3D code simulations incorporate radial, energy, and pitch angle diffusion to reproduce the radiation belts. Our simulations use the historical measurements of Kp (available since solar cycle 17, i.e., 1933) to model the evolution radiation belt dynamics between L* = 1-6.6. A nonlinear auto regressive network with exogenous inputs (NARX) neural network was trained off GOES 15 measurements (January 2011-March 2014) and used to supply the upper boundary condition (L* = 6.6) over the course of solar cycles 17-24 (i.e., 1933-2017). Comparison of the model with long term observations of the Van Allen Probes and CRRES demonstrates that our model, driven by the NARX boundary, can reconstruct the general evolution of the radiation belt fluxes. Solar cycle 24 (January 2008-2017) has been the least active of the considered solar cycles which resulted in unusually low electron fluxes. Our results show that solar cycle 24 should not be used as a representative solar cycle for developing long term environment models. The developed reconstruction of fluxes can be used to develop or improve empirical models of the radiation belts. Y1 - 2021 U6 - https://doi.org/10.1029/2020SW002524 SN - 1542-7390 VL - 19 IS - 3 PB - Wiley CY - New York ER - TY - JOUR A1 - Lang, Felix A1 - Köhnen, Eike A1 - Warby, Jonathan A1 - Xu, Ke A1 - Grischek, Max A1 - Wagner, Philipp A1 - Neher, Dieter A1 - Korte, Lars A1 - Albrecht, Steve A1 - Stolterfoht, Martin T1 - Revealing fundamental efficiency limits of monolithic perovskite/silicon tandem photovoltaics through subcell characterization JF - ACS Energy Letters N2 - Perovskite/silicon tandem photovoltaics (PVs) promise to accelerate the decarbonization of our energy systems. Here, we present a thorough subcell diagnosis methodology to reveal deep insights into the practical efficiency limitations of state-of-the-art perovskite/silicon tandem PVs. Our subcell selective intensity-dependent photoluminescence (PL) and injection-dependent electroluminescence (EL) measurements allow independent assessment of pseudo-V-OC and power conversion efficiencies (PCEs) for both subcells. We reveal identical metrics from PL and EL, which implies well-aligned energy levels throughout the entire cell. Relatively large ideality factors and insufficient charge extraction, however, cause each a fill factor penalty of about 6% (absolute). Using partial device stacks, we then identify significant losses in standard perovskite subcells due to bulk and interfacial recombination. Lastly, we present strategies to minimize these losses using triple halide (CsFAPb(IBrCI)(3)) based perovskites. Our results give helpful feedback for device development and lay the foundation toward advanced perovskite/silicon tandem PVs capable of exceeding 33% PCE. Y1 - 2021 U6 - https://doi.org/10.1021/acsenergylett.1c01783 SN - 2380-8195 VL - 6 IS - 11 SP - 3982 EP - 3991 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Verma, Meetu A1 - Matijevič, Gal A1 - Denker, Carsten A1 - Diercke, Andrea A1 - Dineva, Ekaterina Ivanova A1 - Balthasar, Horst A1 - Kamlah, Robert A1 - Kontogiannis, Ioannis A1 - Kuckein, Christoph A1 - Pal, Partha S. T1 - Classification of high-resolution Solar H alpha spectra using t-distributed stochastic neighbor embedding JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - The H alpha spectral line is a well-studied absorption line revealing properties of the highly structured and dynamic solar chromosphere. Typical features with distinct spectral signatures in H alpha include filaments and prominences, bright active-region plages, superpenumbrae around sunspots, surges, flares, Ellerman bombs, filigree, and mottles and rosettes, among others. This study is based on high-spectral resolution H alpha spectra obtained with the Echelle spectrograph of the Vacuum Tower Telescope (VTT) located at Observatorio del Teide, Tenerife, Spain. The t-distributed stochastic neighbor embedding (t-SNE) is a machine-learning algorithm, which is used for nonlinear dimensionality reduction. In this application, it projects H alpha spectra onto a two-dimensional map, where it becomes possible to classify the spectra according to results of cloud model (CM) inversions. The CM parameters optical depth, Doppler width, line-of-sight velocity, and source function describe properties of the cloud material. Initial results of t-SNE indicate its strong discriminatory power to separate quiet-Sun and plage profiles from those that are suitable for CM inversions. In addition, a detailed study of various t-SNE parameters is conducted, the impact of seeing conditions on the classification is assessed, results for various types of input data are compared, and the identified clusters are linked to chromospheric features. Although t-SNE proves to be efficient in clustering high-dimensional data, human inference is required at each step to interpret the results. This exploratory study provides a framework and ideas on how to tailor a classification scheme toward specific spectral data and science questions. KW - Solar chromosphere KW - Spectroscopy KW - Radiative transfer KW - Astronomy data KW - analysis KW - Astronomy databases KW - Astrostatistics tools Y1 - 2021 U6 - https://doi.org/10.3847/1538-4357/abcd95 SN - 1538-4357 VL - 907 IS - 1 PB - Institute of Physics Publ. CY - London ER - TY - JOUR A1 - Fritsch, Tobias A1 - Sprengel, Maximilian A1 - Evans, Alexander A1 - Farahbod-Sternahl, Lena A1 - Saliwan-Neumann, Romeo A1 - Hofmann, Michael A1 - Bruno, Giovanni T1 - On the determination of residual stresses in additively manufactured lattice structures JF - Journal of applied crystallography / International Union of Crystallography N2 - The determination of residual stresses becomes more complicated with increasing complexity of the structures investigated. Additive manufacturing techniques generally allow the production of 'lattice structures' without any additional manufacturing step. These lattice structures consist of thin struts and are thus susceptible to internal stress-induced distortion and even cracks. In most cases, internal stresses remain locked in the structures as residual stress. The determination of the residual stress in lattice structures through nondestructive neutron diffraction is described in this work. It is shown how two difficulties can be overcome: (a) the correct alignment of the lattice structures within the neutron beam and (b) the correct determination of the residual stress field in a representative part of the structure. The magnitude and the direction of residual stress are discussed. The residual stress in the strut was found to be uniaxial and to follow the orientation of the strut, while the residual stress in the knots was more hydrostatic. Additionally, it is shown that strain measurements in at least seven independent directions are necessary for the estimation of the principal stress directions. The measurement directions should be chosen according to the sample geometry and an informed choice on the possible strain field. If the most prominent direction is not measured, the error in the calculated stress magnitude increases considerably. KW - additive manufacturing KW - laser powder bed fusion KW - residual stress KW - principal stress components KW - neutron diffraction KW - cellular structures KW - lattice structures Y1 - 2021 U6 - https://doi.org/10.1107/S1600576720015344 SN - 1600-5767 VL - 54 SP - 228 EP - 236 PB - Munksgaard CY - Copenhagen ER - TY - JOUR A1 - Mendez, Vicenc A1 - Maso-Puigdellosas, Axel A1 - Sandev, Trifce A1 - Campos, Daniel T1 - Continuous time random walks under Markovian resetting JF - Physical review : E, Statistical, nonlinear and soft matter physics N2 - We investigate the effects of Markovian resetting events on continuous time random walks where the waiting times and the jump lengths are random variables distributed according to power-law probability density functions. We prove the existence of a nonequilibrium stationary state and finite mean first arrival time. However, the existence of an optimum reset rate is conditioned to a specific relationship between the exponents of both power-law tails. We also investigate the search efficiency by finding the optimal random walk which minimizes the mean first arrival time in terms of the reset rate, the distance of the initial position to the target, and the characteristic transport exponents. Y1 - 2021 U6 - https://doi.org/10.1103/PhysRevE.103.022103 SN - 2470-0045 SN - 2470-0053 VL - 103 IS - 2 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Neunteufel, Patrick A1 - Kruckow U., Matthias A1 - Geier, Stephan A1 - Hamers, Adrian S. T1 - Predicted spatial and velocity distributions of ejected companion stars of helium accretion-induced thermonuclear supernovae JF - Astronomy and astrophysics : an international weekly journal N2 - Context Thermonuclear supernovae (SNe), a subset of which are the highly important SNe Type Ia, remain one of the more poorly understood phenomena known to modern astrophysics. In recent years, the single degenerate helium (He) donor channel, where a white dwarf star accretes He-rich matter from a hydrogen-depleted companion, has emerged as a promising candidate progenitor scenario for these events. An unresolved question in this scenario is the fate of the companion star, which would be evident as a runaway hot subdwarf O/B stars (He sdO/B) in the aftermath of the SN event. Aims Previous studies have shown that the kinematic properties of an ejected companion provide an opportunity to closer examine the properties of an SN progenitor system. However, with the number of observed objects not matching predictions by theory, the viability of this mechanism is called into question. In this study, we first synthesize a population of companion stars ejected by the aforementioned mechanism, taking into account predicted ejection velocities, the inferred population density in the Galactic mass distribution, and subsequent kinematics in the Galactic potential. We then discuss the astrometric properties of this population. Methods We present 10(6) individual ejection trajectories, which were numerically computed with a newly developed, lightweight simulation framework. Initial conditions were randomly generated, but weighted according to the Galactic mass density and ejection velocity data. We then discuss the bulk properties (Galactic distribution and observational parameters) of our sample. Results Our synthetic population reflects the Galactic mass distribution. A peak in the density distribution for close objects is expected in the direction of the Galactic centre. Higher mass runaways should outnumber lower mass ones. If the entire considered mass range is realised, the radial velocity distribution should show a peak at 500 km s(-1). If only close US 708 analogues are considered, there should be a peak at (similar to 750-850) km s(-1). In either case, US 708 should be a member of the high-velocity tail of the distribution. Conclusions We show that the puzzling lack of confirmed surviving companion stars of thermonuclear SNe, though possibly an observation-related selection effect, may indicate a selection against high mass donors in the SD He donor channel. KW - stars: kinematics and dynamics KW - binaries: close KW - supernovae: general KW - subdwarfs Y1 - 2021 U6 - https://doi.org/10.1051/0004-6361/202040022 SN - 0004-6361 SN - 1432-0746 VL - 646 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Peng, Junhao A1 - Sandev, Trifce A1 - Kocarev, Ljupco T1 - First encounters on Bethe lattices and Cayley trees JF - Communications in nonlinear science & numerical simulation N2 - In this work we consider the first encounter problems between a fixed and/or mobile target A and a moving trap B on Bethe lattices and Cayley trees. The survival probabilities (SPs) of the target A on the both kinds of structures are considered analytically and compared. On Bethe lattices, the results show that the fixed target will still prolong its survival time, whereas, on Cayley trees, there are some initial positions where the target should move to prolong its survival time. The mean first encounter time (MFET) for mobile target A is evaluated numerically and compared with the mean first passage time (MFPT) for the fixed target A. Different initial settings are addressed and clear boundaries are obtained. These findings are helpful for optimizing the strategy to prolong the survival time of the target or to speed up the search process on Cayley trees, in relation to the target's movement and the initial position configuration of the two walkers. We also present a new method, which uses a small amount of memory, for simulating random walks on Cayley trees. (C) 2020 Elsevier B.V. All rights reserved. KW - Random walks KW - Survival probability KW - Mean first encounter time KW - Bethe KW - lattices KW - Cayley trees Y1 - 2021 U6 - https://doi.org/10.1016/j.cnsns.2020.105594 SN - 1007-5704 SN - 1878-7274 VL - 95 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Cherstvy, Andrey G. A1 - Wang, Wei A1 - Metzler, Ralf A1 - Sokolov, Igor M. T1 - Inertia triggers nonergodicity of fractional Brownian motion JF - Physical review : E, Statistical, nonlinear and soft matter physics N2 - How related are the ergodic properties of the over- and underdamped Langevin equations driven by fractional Gaussian noise? We here find that for massive particles performing fractional Brownian motion (FBM) inertial effects not only destroy the stylized fact of the equivalence of the ensemble-averaged mean-squared displacement (MSD) to the time-averaged MSD (TAMSD) of overdamped or massless FBM, but also dramatically alter the values of the ergodicity-breaking parameter (EB). Our theoretical results for the behavior of EB for underdamped or massive FBM for varying particle mass m, Hurst exponent H, and trace length T are in excellent agreement with the findings of stochastic computer simulations. The current results can be of interest for the experimental community employing various single-particle-tracking techniques and aiming at assessing the degree of nonergodicity for the recorded time series (studying, e.g., the behavior of EB versus lag time). To infer FBM as a realizable model of anomalous diffusion for a set single-particle-tracking data when massive particles are being tracked, the EBs from the data should be compared to EBs of massive (rather than massless) FBM. Y1 - 2021 U6 - https://doi.org/10.1103/PhysRevE.104.024115 SN - 2470-0045 SN - 2470-0053 VL - 104 IS - 2 PB - American Physical Society CY - College Park ER -