TY - JOUR A1 - Pranav, Manasi A1 - Benduhn, Johannes A1 - Nyman, Mathias A1 - Hosseini, Seyed Mehrdad A1 - Kublitski, Jonas A1 - Shoaee, Safa A1 - Neher, Dieter A1 - Leo, Karl A1 - Spoltore, Donato T1 - Enhanced charge selectivity via anodic-C60 layer reduces nonradiative losses in organic solar cells JF - ACS applied materials & interfaces N2 - Interfacial layers in conjunction with suitable charge-transport layers can significantly improve the performance of optoelectronic devices by facilitating efficient charge carrier injection and extraction. This work uses a neat C-60 interlayer on the anode to experimentally reveal that surface recombination is a significant contributor to nonradiative recombination losses in organic solar cells. These losses are shown to proportionally increase with the extent of contact between donor molecules in the photoactive layer and a molybdenum oxide (MoO3) hole extraction layer, proven by calculating voltage losses in low- and high-donor-content bulk heterojunction device architectures. Using a novel in-device determination of the built-in voltage, the suppression of surface recombination, due to the insertion of a thin anodic-C-60 interlayer on MoO3, is attributed to an enhanced built-in potential. The increased built-in voltage reduces the presence of minority charge carriers at the electrodes-a new perspective on the principle of selective charge extraction layers. The benefit to device efficiency is limited by a critical interlayer thickness, which depends on the donor material in bilayer devices. Given the high popularity of MoO3 as an efficient hole extraction and injection layer and the increasingly popular discussion on interfacial phenomena in organic optoelectronic devices, these findings are relevant to and address different branches of organic electronics, providing insights for future device design. KW - nonradiative losses KW - molybdenum oxide KW - organic solar cells KW - interfacial layers KW - charge selectivity Y1 - 2021 U6 - https://doi.org/10.1021/acsami.1c00049 SN - 1944-8244 SN - 1944-8252 VL - 13 IS - 10 SP - 12603 EP - 12609 PB - American Chemical Society CY - Washington ER - TY - GEN A1 - Phuong, Le Quang A1 - Hosseini, Seyed Mehrdad A1 - Sandberg, Oskar J. A1 - Zou, Yingping A1 - Woo, Han Young A1 - Neher, Dieter A1 - Shoaee, Safa T1 - Quantifying quasi-fermi level splitting and open-circuit voltage losses in highly efficient nonfullerene organic solar cells T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The power conversion efficiency (PCE) of state-of-the-art organic solar cells is still limited by significant open-circuit voltage (V-OC) losses, partly due to the excitonic nature of organic materials and partly due to ill-designed architectures. Thus, quantifying different contributions of the V-OC losses is of importance to enable further improvements in the performance of organic solar cells. Herein, the spectroscopic and semiconductor device physics approaches are combined to identify and quantify losses from surface recombination and bulk recombination. Several state-of-the-art systems that demonstrate different V-OC losses in their performance are presented. By evaluating the quasi-Fermi level splitting (QFLS) and the V-OC as a function of the excitation fluence in nonfullerene-based PM6:Y6, PM6:Y11, and fullerene-based PPDT2FBT:PCBM devices with different architectures, the voltage losses due to different recombination processes occurring in the active layers, the transport layers, and at the interfaces are assessed. It is found that surface recombination at interfaces in the studied solar cells is negligible, and thus, suppressing the non-radiative recombination in the active layers is the key factor to enhance the PCE of these devices. This study provides a universal tool to explain and further improve the performance of recently demonstrated high-open-circuit-voltage organic solar cells. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1384 KW - nonfullerene acceptors KW - organic solar cells KW - quasi-Fermi level KW - splitting KW - quasi-steady-state photoinduced absorptions KW - surface KW - recombinations KW - voltage losses Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-570018 SN - 1866-8372 IS - 1 ER - TY - JOUR A1 - Perdigon-Toro, Lorena A1 - Zhang, Huotian A1 - Markina, Anastaa si A1 - Yuan, Jun A1 - Hosseini, Seyed Mehrdad A1 - Wolff, Christian Michael A1 - Zuo, Guangzheng A1 - Stolterfoht, Martin A1 - Zou, Yingping A1 - Gao, Feng A1 - Andrienko, Denis A1 - Shoaee, Safa A1 - Neher, Dieter T1 - Barrierless free charge generation in the high-performance PM6:Y6 bulk heterojunction non-fullerene solar cell JF - Advanced materials N2 - Organic solar cells are currently experiencing a second golden age thanks to the development of novel non-fullerene acceptors (NFAs). Surprisingly, some of these blends exhibit high efficiencies despite a low energy offset at the heterojunction. Herein, free charge generation in the high-performance blend of the donor polymer PM6 with the NFA Y6 is thoroughly investigated as a function of internal field, temperature and excitation energy. Results show that photocurrent generation is essentially barrierless with near-unity efficiency, regardless of excitation energy. Efficient charge separation is maintained over a wide temperature range, down to 100 K, despite the small driving force for charge generation. Studies on a blend with a low concentration of the NFA, measurements of the energetic disorder, and theoretical modeling suggest that CT state dissociation is assisted by the electrostatic interfacial field which for Y6 is large enough to compensate the Coulomb dissociation barrier. KW - driving force KW - non-fullerene acceptors KW - organic solar cells KW - photocurrent generation Y1 - 2020 U6 - https://doi.org/10.1002/adma.201906763 SN - 0935-9648 SN - 1521-4095 VL - 32 IS - 9 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Phuong, Le Quang A1 - Hosseini, Seyed Mehrdad A1 - Sandberg, Oskar J. A1 - Zou, Yingping A1 - Woo, Han Young A1 - Neher, Dieter A1 - Shoaee, Safa T1 - Quantifying quasi-fermi level splitting and open-circuit voltage losses in highly efficient nonfullerene organic solar cells JF - Solar RRL N2 - The power conversion efficiency (PCE) of state-of-the-art organic solar cells is still limited by significant open-circuit voltage (V-OC) losses, partly due to the excitonic nature of organic materials and partly due to ill-designed architectures. Thus, quantifying different contributions of the V-OC losses is of importance to enable further improvements in the performance of organic solar cells. Herein, the spectroscopic and semiconductor device physics approaches are combined to identify and quantify losses from surface recombination and bulk recombination. Several state-of-the-art systems that demonstrate different V-OC losses in their performance are presented. By evaluating the quasi-Fermi level splitting (QFLS) and the V-OC as a function of the excitation fluence in nonfullerene-based PM6:Y6, PM6:Y11, and fullerene-based PPDT2FBT:PCBM devices with different architectures, the voltage losses due to different recombination processes occurring in the active layers, the transport layers, and at the interfaces are assessed. It is found that surface recombination at interfaces in the studied solar cells is negligible, and thus, suppressing the non-radiative recombination in the active layers is the key factor to enhance the PCE of these devices. This study provides a universal tool to explain and further improve the performance of recently demonstrated high-open-circuit-voltage organic solar cells. KW - nonfullerene acceptors KW - organic solar cells KW - quasi-Fermi level KW - splitting KW - quasi-steady-state photoinduced absorptions KW - surface KW - recombinations KW - voltage losses Y1 - 2020 U6 - https://doi.org/10.1002/solr.202000649 SN - 2367-198X VL - 5 IS - 1 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Ran, Niva A. A1 - Love, John A. A1 - Heiber, Michael C. A1 - Jiao, Xuechen A1 - Hughes, Michael P. A1 - Karki, Akchheta A1 - Wang, Ming A1 - Brus, Viktor V. A1 - Wang, Hengbin A1 - Neher, Dieter A1 - Ade, Harald A1 - Bazan, Guillermo C. A1 - Thuc-Quyen Nguyen, T1 - Charge generation and recombination in an organic solar cell with low energetic offsets JF - dvanced energy materials N2 - Organic bulk heterojunction (BHJ) solar cells require energetic offsets between the donor and acceptor to obtain high short-circuit currents (J(SC)) and fill factors (FF). However, it is necessary to reduce the energetic offsets to achieve high open-circuit voltages (V-OC). Recently, reports have highlighted BHJ blends that are pushing at the accepted limits of energetic offsets necessary for high efficiency. Unfortunately, most of these BHJs have modest FF values. How the energetic offset impacts the solar cell characteristics thus remains poorly understood. Here, a comprehensive characterization of the losses in a polymer:fullerene BHJ blend, PIPCP:phenyl-C61-butyric acid methyl ester (PC61BM), that achieves a high V-OC (0.9 V) with very low energy losses (E-loss = 0.52 eV) from the energy of absorbed photons, a respectable J(SC) (13 mA cm(-2)), but a limited FF (54%) is reported. Despite the low energetic offset, the system does not suffer from field-dependent generation and instead it is characterized by very fast nongeminate recombination and the presence of shallow traps. The charge-carrier losses are attributed to suboptimal morphology due to high miscibility between PIPCP and PC61BM. These results hold promise that given the appropriate morphology, the J(SC), V-OC, and FF can all be improved, even with very low energetic offsets. KW - energetic offset KW - fill factor KW - morphology KW - organic solar cells KW - recombination Y1 - 2018 U6 - https://doi.org/10.1002/aenm.201701073 SN - 1614-6832 SN - 1614-6840 VL - 8 IS - 5 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Alqahtani, Obaid A1 - Babics, Maxime A1 - Gorenflot, Julien A1 - Savikhin, Victoria A1 - Ferron, Thomas A1 - Balawi, Ahmed H. A1 - Paulke, Andreas A1 - Kan, Zhipeng A1 - Pope, Michael A1 - Clulow, Andrew J. A1 - Wolf, Jannic A1 - Burn, Paul L. A1 - Gentle, Ian R. A1 - Neher, Dieter A1 - Toney, Michael F. A1 - Laquai, Frederic A1 - Beaujuge, Pierre M. A1 - Collins, Brian A. T1 - Mixed Domains Enhance Charge Generation and Extraction in Bulk-Heterojunction Solar Cells with Small-Molecule Donors JF - Advanced energy materials N2 - The interplay between nanomorphology and efficiency of polymer-fullerene bulk-heterojunction (BHJ) solar cells has been the subject of intense research, but the generality of these concepts for small-molecule (SM) BHJs remains unclear. Here, the relation between performance; charge generation, recombination, and extraction dynamics; and nanomorphology achievable with two SM donors benzo[1,2-b:4,5-b]dithiophene-pyrido[3,4-b]-pyrazine BDT(PPTh2)(2), namely SM1 and SM2, differing by their side-chains, are examined as a function of solution additive composition. The results show that the additive 1,8-diiodooctane acts as a plasticizer in the blends, increases domain size, and promotes ordering/crystallinity. Surprisingly, the system with high domain purity (SM1) exhibits both poor exciton harvesting and severe charge trapping, alleviated only slightly with increased crystallinity. In contrast, the system consisting of mixed domains and lower crystallinity (SM2) shows both excellent exciton harvesting and low charge recombination losses. Importantly, the onset of large, pure crystallites in the latter (SM2) system reduces efficiency, pointing to possible differences in the ideal morphologies for SM-based BHJ solar cells compared with polymer-fullerene devices. In polymer-based systems, tie chains between pure polymer crystals establish a continuous charge transport network, whereas SM-based active layers may in some cases require mixed domains that enable both aggregation and charge percolation to the electrodes. KW - charge transport KW - domain purity KW - microscopy KW - mixed domains KW - organic solar cells KW - photovoltaic devices KW - resonant X-ray scattering KW - small molecules KW - transient spectroscopy Y1 - 2018 U6 - https://doi.org/10.1002/aenm.201702941 SN - 1614-6832 SN - 1614-6840 VL - 8 IS - 19 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Benduhn, Johannes A1 - Piersimoni, Fortunato A1 - Londi, Giacomo A1 - Kirch, Anton A1 - Widmer, Johannes A1 - Koerner, Christian A1 - Beljonne, David A1 - Neher, Dieter A1 - Spoltore, Donato A1 - Vandewal, Koen T1 - Impact of triplet excited states on the open-circuit voltage of organic solar cells JF - dvanced energy materials N2 - The best organic solar cells (OSCs) achieve comparable peak external quantum efficiencies and fill factors as conventional photovoltaic devices. However, their voltage losses are much higher, in particular those due to nonradiative recombination. To investigate the possible role of triplet states on the donor or acceptor materials in this process, model systems comprising Zn- and Cu-phthalocyanine (Pc), as well as fluorinated versions of these donors, combined with C-60 as acceptor are studied. Fluorination allows tuning the energy level alignment between the lowest energy triplet state (T-1) and the charge-transfer (CT) state, while the replacement of Zn by Cu as the central metal in the Pcs leads to a largely enhanced spin-orbit coupling. Only in the latter case, a substantial influence of the triplet state on the nonradiative voltage losses is observed. In contrast, it is found that for a large series of typical OSC materials, the relative energy level alignment between T-1 and the CT state does not substantially affect nonradiative voltage losses. KW - charge-transfer states KW - nonradiative voltage losses KW - organic solar cells KW - triplet excited states Y1 - 2018 U6 - https://doi.org/10.1002/aenm.201800451 SN - 1614-6832 SN - 1614-6840 VL - 8 IS - 21 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Shoaee, Safa A1 - Stolterfoht, Martin A1 - Neher, Dieter T1 - The Role of Mobility on Charge Generation, Recombination, and Extraction in Polymer-Based Solar Cells JF - dvanced energy materials N2 - Organic semiconductors are of great interest for a broad range of optoelectronic applications due to their solution processability, chemical tunability, highly scalable fabrication, and mechanical flexibility. In contrast to traditional inorganic semiconductors, organic semiconductors are intrinsically disordered systems and therefore exhibit much lower charge carrier mobilities-the Achilles heel of organic photovoltaic cells. In this progress review, the authors discuss recent important developments on the impact of charge carrier mobility on the charge transfer state dissociation, and the interplay of free charge extraction and recombination. By comparing the mobilities on different timescales obtained by different techniques, the authors highlight the dispersive nature of these materials and how this reflects on the key processes defining the efficiency of organic photovoltaics. KW - charge generation KW - charge recombination KW - extraction KW - mobility KW - organic solar cells KW - polymer:fullerene bulk heterojunction Y1 - 2018 U6 - https://doi.org/10.1002/aenm.201703355 SN - 1614-6832 SN - 1614-6840 VL - 8 IS - 28 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Nikolis, Vasileios C. A1 - Benduhn, Johannes A1 - Holzmueller, Felix A1 - Piersimoni, Fortunato A1 - Lau, Matthias A1 - Zeika, Olaf A1 - Neher, Dieter A1 - Koerner, Christian A1 - Spoltore, Donato A1 - Vandewal, Koen T1 - Reducing Voltage Losses in Cascade Organic Solar Cells while Maintaining High External Quantum Efficiencies JF - dvanced energy materials N2 - High photon energy losses limit the open-circuit voltage (V-OC) and power conversion efficiency of organic solar cells (OSCs). In this work, an optimization route is presented which increases the V-OC by reducing the interfacial area between donor (D) and acceptor (A). This optimization route concerns a cascade device architecture in which the introduction of discontinuous interlayers between alpha-sexithiophene (alpha-6T) (D) and chloroboron subnaphthalocyanine (SubNc) (A) increases the V-OC of an alpha-6T/SubNc/SubPc fullerene-free cascade OSC from 0.98 V to 1.16 V. This increase of 0.18 V is attributed solely to the suppression of nonradiative recombination at the D-A interface. By accurately measuring the optical gap (E-opt) and the energy of the charge-transfer state (E-CT) of the studied OSC, a detailed analysis of the overall voltage losses is performed. E-opt - qV(OC) losses of 0.58 eV, which are among the lowest observed for OSCs, are obtained. Most importantly, for the V-OC-optimized devices, the low-energy (700 nm) external quantum efficiency (EQE) peak remains high at 79%, despite a minimal driving force for charge separation of less than 10 meV. This work shows that low-voltage losses can be combined with a high EQE in organic photovoltaic devices. KW - energy losses KW - nonradiative recombination KW - open-circuit voltage KW - organic solar cells KW - voltage losses Y1 - 2017 U6 - https://doi.org/10.1002/aenm.201700855 SN - 1614-6832 SN - 1614-6840 VL - 7 SP - 122 EP - 136 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Foertig, Alexander A1 - Kniepert, Juliane A1 - Gluecker, Markus A1 - Brenner, Thomas J. K. A1 - Dyakonov, Vladimir A1 - Neher, Dieter A1 - Deibel, Carsten T1 - Nongeminate and geminate recombination in PTB7: PCBM solar cells JF - Advanced functional materials KW - organic semiconductors KW - organic solar cells KW - conjugated polymers KW - charge carrier recombination Y1 - 2014 U6 - https://doi.org/10.1002/adfm.201302134 SN - 1616-301X SN - 1616-3028 VL - 24 IS - 9 SP - 1306 EP - 1311 PB - Wiley-VCH CY - Weinheim ER -