TY - JOUR A1 - Zühlke, Martin A1 - Meiling, Till Thomas A1 - Roder, Phillip A1 - Riebe, Daniel A1 - Beitz, Toralf A1 - Bald, Ilko A1 - Löhmannsröben, Hans-Gerd A1 - Janßen, Traute A1 - Erhard, Marcel A1 - Repp, Alexander T1 - Photodynamic inactivation of E. coli bacteria via carbon nanodots JF - ACS omega / American Chemical Society N2 - The increasing development of antibiotic resistance in bacteria has been a major problem for years, both in human and veterinary medicine. Prophylactic measures, such as the use of vaccines, are of great importance in reducing the use of antibiotics in livestock. These vaccines are mainly produced based on formaldehyde inactivation. However, the latter damages the recognition elements of the bacterial proteins and thus could reduce the immune response in the animal. An alternative inactivation method developed in this work is based on gentle photodynamic inactivation using carbon nanodots (CNDs) at excitation wavelengths λex > 290 nm. The photodynamic inactivation was characterized on the nonvirulent laboratory strain Escherichia coli K12 using synthesized CNDs. For a gentle inactivation, the CNDs must be absorbed into the cytoplasm of the E. coli cell. Thus, the inactivation through photoinduced formation of reactive oxygen species only takes place inside the bacterium, which means that the outer membrane is neither damaged nor altered. The loading of the CNDs into E. coli was examined using fluorescence microscopy. Complete loading of the bacterial cells could be achieved in less than 10 min. These studies revealed a reversible uptake process allowing the recovery and reuse of the CNDs after irradiation and before the administration of the vaccine. The success of photodynamic inactivation was verified by viability assays on agar. In a homemade flow photoreactor, the fastest successful irradiation of the bacteria could be carried out in 34 s. Therefore, the photodynamic inactivation based on CNDs is very effective. The membrane integrity of the bacteria after irradiation was verified by slide agglutination and atomic force microscopy. The method developed for the laboratory strain E. coli K12 could then be successfully applied to the important avian pathogens Bordetella avium and Ornithobacterium rhinotracheale to aid the development of novel vaccines. KW - Bacteria KW - Genetics KW - Fluorescence KW - Photodynamics KW - Irradiation Y1 - 2021 U6 - https://doi.org/10.1021/acsomega.1c01700 SN - 2470-1343 VL - 6 IS - 37 SP - 23742 EP - 23749 PB - ACS Publications CY - Washington, DC ER - TY - JOUR A1 - Zhou, Shuo A1 - Xu, Xun A1 - Ma, Nan A1 - Jung, Friedrich A1 - Lendlein, Andreas T1 - Influence of sterilization conditions on sulfate-functionalized polyGGE JF - Clinical hemorheology and microcirculation : blood flow and vessels N2 - Sulfated biomolecules are known to influence numerous biological processes in all living organisms. Particularly, they contribute to prevent and inhibit the hypercoagulation condition. The failure of polymeric implants and blood contacting devices is often related to hypercoagulation and microbial contamination. Here, bioactive sulfated biomacromolecules are mimicked by sulfation of poly(glycerol glycidyl ether) (polyGGE) films. Autoclaving, gamma-ray irradiation and ethylene oxide (EtO) gas sterilization techniques were applied to functionalized materials. The sulfate group density and hydrophilicity of sulfated polymers were decreased while chain mobility and thermal degradation were enhanced post autoclaving when compared to those after EtO sterilization. These results suggest that a quality control after sterilization is mandatory to ensure the amount and functionality of functionalized groups are retained. KW - Sulfated polymer KW - sulfation KW - sterilization KW - ethylene oxide Y1 - 2021 U6 - https://doi.org/10.3233/CH-211241 SN - 1386-0291 SN - 1875-8622 VL - 79 IS - 4 SP - 597 EP - 608 PB - IOS Press CY - Amsterdam ER - TY - JOUR A1 - Zhao, Yuhang A1 - Opitz, Andreas A1 - Eljarrat, Alberto A1 - Kochovski, Zdravko A1 - Koch, Christoph A1 - Koch, Norbert A1 - Lu, Yan T1 - Kinetic study on the adsorption of 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane on Ag nanoparticles in chloroform BT - implications for the charge transfer complex of Ag-F(4)TCNQ JF - ACS applied nano materials N2 - In this study, the kinetics of the adsorption of 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F(4)TCNQ) on the surface of Ag nanoparticles (Ag NPs) in chloroform has been intensively investigated, as molecular doping is known to play a crucial role in organic electronic devices. Based on the results obtained from UV-visible (vis)-near-infrared (NIR) absorption spectroscopy, cryogenic transmission electron microscopy, scanning nanobeam electron diffraction, and electron energy loss spectroscopy, a two-step interaction kinetics has been proposed for the Ag NPs and F(4)TCNQ molecules, which includes the first step of electron transfer from Ag NPs to F(4)TCNQ indicated by the ionization of F(4)TCNQ and the second step of the formation of a Ag-F(4)TCNQ complex. The whole process has been followed via UV-vis-NIR absorption spectroscopy, which reveals distinct kinetics at two stages: the instantaneous ionization and the long-term complex formation. The kinetics and the influence of the molar ratio of Ag NPs/F(4)TCNQ molecules on the interaction between Ag NPs and F(4)TCNQ molecules in an organic solution are reported herein for the first time. Furthermore, the control experiment with silica-coated Ag NPs manifests that the charge transfer at the surface between Ag NPs and F(4)TCNQ molecules is prohibited by a silica layer of 18 nm. KW - Ag nanoparticles KW - F(4)TCNQ KW - phase transfer KW - kinetics KW - electron transfer KW - surface interaction Y1 - 2021 U6 - https://doi.org/10.1021/acsanm.1c02153 SN - 2574-0970 VL - 4 IS - 11 SP - 11625 EP - 11635 PB - American Chemical Society CY - Washington ER - TY - THES A1 - Zhao, Yuhang T1 - Synthesis and surface functionalization on plasmonic nanoparticles for optical applications N2 - This thesis focuses on the synthesis of novel functional materials based on plasmonic nanoparticles. Three systems with targeted surface modification and functionalization have been designed and synthesized, involving modified perylenediimide doped silica-coated silver nanowires, polydopamine or TiO2 coated gold-palladium nanorods and thiolated poly(ethylene glycol) (PEG-SH)/dodecanethiol (DDT) modified silver nanospheres. Their possible applications as plasmonic resonators, chiral sensors as well as photo-catalysts have been studied. In addition, the interaction between silver nanospheres and 2,3,5,6-Tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ) molecules has also been investigated in detail. In the first part of the thesis, surface modification on Ag nanowires (NWs) with optimized silica coating through a modified Stöber method has been firstly conducted, employing sodium hydroxide (NaOH) to replace ammonia solution (NH4OH). The coated silver nanowires with a smooth silica shell have been investigated by single-particle dark-field scattering spectroscopy, transmission electron microscopy and electron-energy loss spectroscopy to characterize the morphologies and structural components. The silica-coated silver nanowires can be further functionalized with fluorescent molecules in the silica shell via a facile one-step coating method. The as-synthesized nanowire is further coupled with a gold nanosphere by spin-coating for the application of the sub-diffractional chiral sensor for the first time. The exciton-plasmon-photon interconversion in the system eases the signal detection in the perfectly matched 1D nanostructure and contributes to the high contrast of the subwavelength chiral sensing for the polarized light. In the second part of the thesis, dumbbell-shaped Au-Pd nanorods coated with a layer of polydopamine (PDA) or titanium dioxide (TiO2) have been constructed. The PDA- and TiO2- coated Au-Pd nanorods show a strong photothermal conversion performance under NIR illumination. Moreover, the catalytic performance of the particles has been investigated using the reduction of 4-nitrophenol (4-NP) as the model reaction. Under light irradiation, the PDA-coated Au-Pd nanorods exhibit a superior catalytic activity by increasing the reaction rate constant of 3 times. The Arrhenius-like behavior of the reaction with similar activation energies in the presence and absence of light irradiation indicates the photoheating effect to be the dominant mechanism of the reaction acceleration. Thus, we attribute the enhanced performance of the catalysis to the strong photothermal effect that is driven by the optical excitation of the gold surface plasmon as well as the synergy with the PDA layer. In the third part, the kinetic study on the adsorption of 2,3,5,6-Tetrafluoro-7,7,8,8-tetracyanoquino-dimethane (F4TCNQ) on the surface of Ag nanoparticles (Ag NPs) in chloroform has been reported in detail. Based on the results obtained from the UV-vis-NIR absorption spectroscopy, cryogenic transmission electron microscopy (cryo-TEM), scanning nano-beam electron diffraction (NBED) and electron energy loss spectroscopy (EELS), a two-step interaction kinetics has been proposed for the Ag NPs and F4TCNQ molecules. It includes the first step of electron transfer from Ag NPs to F4TCNQ indicated by the ionization of F4TCNQ, and the second step of the formation of Ag-F4TCNQ complex. The whole process has been followed via UV-vis-NIR absorption spectroscopy, which reveals distinct kinetics at two stages: the instantaneous ionization and the long-term complex formation. The kinetics and the influence of the molar ratio of Ag NPs/F4TCNQ molecules on the interaction between Ag NPs and F4TCNQ molecules in the organic solution are reported herein for the first time. Furthermore, the control experiment with silica-coated Ag NPs indicates that the charge transfer at the surface between Ag NPs and F4TCNQ molecules has been prohibited by a silica layer of 18 nm. KW - plasmonic nanoparticles KW - silica KW - polydopamine KW - TiO2 KW - chiral sensing KW - catalysis KW - surface interaction Y1 - 2021 ER - TY - JOUR A1 - Zhang, Pengfei A1 - Rešetič, Andraž A1 - Behl, Marc A1 - Lendlein, Andreas T1 - Multifunctionality in polymer networks by dynamic of coordination bonds JF - Macromolecular chemistry and physics N2 - The need for multifunctional materials is driven by emerging technologies and innovations, such as in the field of soft robotics and tactile or haptic systems, where minimizing the number of operational components is not only desirable, but can also be essential for realizing such devices. This study report on designing a multifunctional soft polymer material that can address a number of operating requirements such as solvent resistance, reshaping ability, self-healing capability, fluorescence stimuli-responsivity, and anisotropic structural functions. The numerous functional abilities are associated to rhodium(I)-phosphine coordination bonds, which in a polymer network act with their dynamic and non-covalently bonded nature as multifunctional crosslinks. Reversible aggregation of coordination bonds leads to changes in fluorescence emission intensity that responds to chemical or mechanical stimuli. The fast dynamics and diffusion of rhodium-phosphine ions across and through contacting areas of the material provide for reshaping and self-healing abilities that can be further exploited for assembly of multiple pieces into complex forms, all without any loss to material-sensing capabilities. KW - assembly capabilities KW - fluorescence stimuli‐ responsivity KW - multiple functions KW - reshaping abilities KW - rhodium(I)– phosphine KW - coordination bonds KW - solvent resistance Y1 - 2021 U6 - https://doi.org/10.1002/macp.202000394 SN - 1521-3935 VL - 222 IS - 3 PB - Wiley-VCH CY - Weinheim ER - TY - THES A1 - Yan, Wan T1 - Shape-Memory effects of thermoplatic multiblock copolymers with overlapping thermal transitions Y1 - 2021 ER - TY - JOUR A1 - Xu, Xun A1 - Nie, Yan A1 - Wang, Weiwei A1 - Ma, Nan A1 - Lendlein, Andreas T1 - Periodic thermomechanical modulation of toll-like receptor expression and distribution in mesenchymal stromal cells JF - MRS communications / a publication of the Materials Research Society N2 - Toll-like receptor (TLR) can trigger an immune response against virus including SARS-CoV-2. TLR expression/distribution is varying in mesenchymal stromal cells (MSCs) depending on their culture environments. Here, to explore the effect of periodic thermomechanical cues on TLRs, thermally controlled shape-memory polymer sheets with programmable actuation capacity were created. The proportion of MSCs expressing SARS-CoV-2-associated TLRs was increased upon stimulation. The TLR4/7 colocalization was promoted and retained in the endoplasmic reticula. The TLR redistribution was driven by myosin-mediated F-actin assembly. These results highlight the potential of boosting the immunity for combating COVID-19 via thermomechanical preconditioning of MSCs. KW - Actuation KW - Antiviral KW - Biomaterial KW - COVID-19 KW - Shape memory Y1 - 2021 U6 - https://doi.org/10.1557/s43579-021-00049-5 SN - 2159-6859 SN - 2159-6867 VL - 11 IS - 4 SP - 425 EP - 431 PB - Springer CY - Berlin ER - TY - JOUR A1 - Xie, Dongjiu A1 - Mei, Shilin A1 - Xu, Yaolin A1 - Quan, Ting A1 - Haerk, Eneli A1 - Kochovski, Zdravko A1 - Lu, Yan T1 - Efficient sulfur host based on yolk-shell iron oxide/sulfide-carbon nanospindles for lithium-sulfur batteries JF - ChemSusChem : chemistry, sustainability, energy, materials N2 - Numerous nanostructured materials have been reported as efficient sulfur hosts to suppress the problematic "shuttling" of lithium polysulfides (LiPSs) in lithium-sulfur (Li-S) batteries. However, direct comparison of these materials in their efficiency of suppressing LiPSs shuttling is challenging, owing to the structural and morphological differences between individual materials. This study introduces a simple route to synthesize a series of sulfur host materials with the same yolk-shell nanospindle morphology but tunable compositions (Fe3O4, FeS, or FeS2), which allows for a systematic investigation into the specific effect of chemical composition on the electrochemical performances of Li-S batteries. Among them, the S/FeS2-C electrode exhibits the best performance and delivers an initial capacity of 877.6 mAh g(-1) at 0.5 C with a retention ratio of 86.7 % after 350 cycles. This approach can also be extended to the optimization of materials for other functionalities and applications. KW - batteries KW - electrode materials KW - lithium sulfides KW - yolk-shell KW - nanostructures Y1 - 2021 U6 - https://doi.org/10.1002/cssc.202002731 SN - 1864-5631 SN - 1864-564X VL - 14 IS - 5 SP - 1404 EP - 1413 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Wojnarowska, Zaneta A1 - Lange, Alyna A1 - Taubert, Andreas A1 - Paluch, Marian T1 - Ion and proton transport in aqueous/nonaqueous acidic tonic liquids for fuel-cell applications-insight from high-pressure dielectric studies JF - ACS applied materials & interfaces / American Chemical Society N2 - The use of acidic ionic liquids and solids as electrolytes in fuel cells is an emerging field due to their efficient proton conductivity and good thermal stability. Despite multiple reports describing conducting properties of acidic ILs, little is known on the charge-transport mechanism in the vicinity of liquid-glass transition and the structural factors governing the proton hopping. To address these issues, we studied two acidic imidazolium-based ILs with the same cation, however, different anions-bulk tosylate vs small methanesulfonate. High-pressure dielectric studies of anhydrous and water-saturated materials performed in the close vicinity of T-g have revealed significant differences in the charge-transport mechanism in these two systems being undetectable at ambient conditions. Thereby, we demonstrated the effect of molecular architecture on proton hopping, being crucial in the potential electrochemical applications of acidic ILs. KW - proton hopping KW - dielectric spectroscopy KW - high pressure KW - ion transport KW - acidic ionic liquids Y1 - 2021 U6 - https://doi.org/10.1021/acsami.1c06260 SN - 1944-8244 SN - 1944-8252 VL - 13 IS - 26 SP - 30614 EP - 30624 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Witzorky, Christoph A1 - Paramonov, Guennaddi A1 - Bouakline, Foudhil A1 - Jaquet, Ralph A1 - Saalfrank, Peter A1 - Klamroth, Tillmann T1 - Gaussian-type orbital calculations for high harmonic generation in vibrating molecules BT - Benchmarks for H-2(+) JF - Journal of chemical theory and computation N2 - The response of the hydrogen molecular ion, H-2(+), to few-cycle laser pulses of different intensities is simulated. To treat the coupled electron-nuclear motion, we use adiabatic potentials computed with Gaussian-type basis sets together with a heuristic ionization model for the electron and a grid representation for the nuclei. Using this mixed-basis approach, the time-dependent Schrodinger equation is solved, either within the Born-Oppenheimer approximation or with nonadiabatic couplings included. The dipole response spectra are compared to all-grid-based solutions for the three-body problem, which we take as a reference to benchmark the Gaussian-type basis set approaches. Also, calculations employing the fixed-nuclei approximation are performed, to quantify effects due to nuclear motion. For low intensities and small ionization probabilities, we get excellent agreement of the dynamics using Gaussian-type basis sets with the all-grid solutions. Our investigations suggest that high harmonic generation (HHG) and high-frequency response, in general, can be reliably modeled using Gaussian-type basis sets for the electrons for not too high harmonics. Further, nuclear motion destroys electronic coherences in the response spectra even on the time scale of about 30 fs and affects HHG intensities, which reflect the electron dynamics occurring on the attosecond time scale. For the present system, non-Born-Oppenheimer effects are small. The Gaussian-based, nonadiabatically coupled, time-dependent multisurface approach to treat quantum electron-nuclear motion beyond the non-Born-Oppenheimer approximation can be easily extended to approximate wavefunction methods, such as time-dependent configuration interaction singles (TD-CIS), for systems where no benchmarks are available. KW - Basis sets KW - Chemical calculations KW - Ionization KW - Lasers KW - Quantum mechanics Y1 - 2021 U6 - https://doi.org/10.1021/acs.jctc.1c00837 SN - 1549-9618 SN - 1549-9626 VL - 17 IS - 12 SP - 7353 EP - 7365 PB - American Chemical Society CY - Washington ER -