TY - JOUR A1 - Vacogne, Charlotte Dominique A1 - Wei, Chunxiang A1 - Tauer, Klaus A1 - Schlaad, Helmut T1 - Self-assembly of alpha-helical polypeptides into microscopic and enantiomorphic spirals JF - Journal of the american chemical society N2 - Helical structures are ubiquitous in biological materials and often serve a structural purpose. Bioinspired helical materials can be challenging to synthesize and rarely reach the degree of hierarchy of their natural counterparts. Here we report the first example of particles synthesized by direct emulsification of polypeptides found to display spiral morphologies in the dry state. The polypeptides were alpha-helical homo- and copolypeptides of gamma-benzyl glutamate and allylglycine. The chirality of the spirals was controlled by the chirality of the alpha-helices. Notably, right-handed alpha-helical polypeptides (rich in 1, residues) produced clockwise spirals, whereas left-handed alpha-helical polypeptides (rich in D residues) produced the enantiomorphs, i.e., counterclockwise spirals. The disruption of the alpha-helical conformation by the introduction of chiral defects led to less regular spirals and in some cases their suppression. A hypothesis for the transmission of helicity and chirality from a molecular to a higher hierarchical level, involving fibril bundling of coiled alpha-helices, is proposed. Y1 - 2018 U6 - https://doi.org/10.1021/jacs.8b06503 SN - 0002-7863 VL - 140 IS - 36 SP - 11387 EP - 11394 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Peh, Eddie A1 - Liedel, Clemens A1 - Taubert, Andreas A1 - Tauer, Klaus T1 - Composition inversion to form calcium carbonate mixtures JF - CrystEngComm N2 - Composition inversion takes place in equimolar solid mixtures of sodium or ammonium carbonate and calcium chloride with respect to the combination of anions and cations leading to the corresponding chloride and calcite in complete conversion. The transformation takes place spontaneously under a variety of different situations, even in a powdery mixture resting under ambient conditions. Powder X-ray diffraction data and scanning electron microscopy micrographs are presented to describe the course of the reaction and to characterize the reaction products. The incomplete reaction in the interspace between two compressed tablets of pure starting materials leads to an electric potential due to the presence of uncompensated charges. Y1 - 2017 U6 - https://doi.org/10.1039/c7ce00433h SN - 1466-8033 VL - 19 SP - 3573 EP - 3583 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Weber, Nancy A1 - Tiersch, Brigitte A1 - Unterlass, Miriam M. A1 - Heilig, Anneliese A1 - Tauer, Klaus T1 - "Schizomorphic" Emulsion Copolymerization Particles JF - Macromolecular rapid communications N2 - Cryo-electron microscopy, atomic force microscopy, and light microscopy investigations provide experimental evidence that amphiphilic emulsion copolymerization particles change their morphology in dependence on concentration. The shape of the particles is spherical at solids content above 1%, but it changes to rod-like, ring-like, and web-like structures at lower concentrations. In addition, the shape and morphology of these particles at low concentrations are not fixed but very flexible and vary with time between spheres, flexible pearlnecklace structures, and stretched rods. KW - amphiphilic particles KW - emulsion polymerization KW - morphology Y1 - 2011 U6 - https://doi.org/10.1002/marc.201100491 SN - 1022-1336 VL - 32 IS - 23 SP - 1925 EP - 1929 PB - Wiley-Blackwell CY - Malden ER -