TY - JOUR A1 - Scheller, Frieder W. A1 - Yarman, Aysu T1 - Bio vs. Mimetika in der Bioanalytik T1 - Bio vs. Mimetics in Bioanalysis: An Editorial BT - ein Editorial JF - Biochemie und analytische Biochemie N2 - Natürliche Evolution hat geschaffenBiopolymereauf der Basis von Aminosäuren undNukleotidezeigt hohe chemische Selektivität und katalytische Kraft. Die molekulare Erkennung durch Antikörper und die katalytische Umwandlung der Substratmoleküle durch Enzyme findet in sogenannten Paratopen oder katalytischen Zentren des Makromoleküls statt, die typischerweise 10-15 Aminosäuren umfassen. Die konzertierte Wechselwirkung zwischen den Reaktionspartnern führt zu Affinitäten bis zu nanomolaren Konzentrationen für die Antigenbindung und nähert sich einer Million Umsätze pro Sekunde anEnzym-katalysierte Reaktionen. N2 - Natural evolution has created biopolymers on the basis of amino acids and nucleotides showing high chemical selectivity and catalytic power. Molecular recognition by antibodies and catalytic conversion of the substrate molecules by enzymes take place in so called paratopes or catalytic centres of the macromolecule which comprise typically 10-15 amino acids. The concerted interaction between the reaction partners result in affinities down to nanomolar concentrations for the antigen binding and approaches one million turnovers per second in enzyme-catalyzed reactions. Nucleic acids bind complimentary single stranded nucleic acids by base pairing (hybridisation) with nanomolar affinities but also interact highly specific with proteins, e.g. transcription factors, and lowmolecular weight molecules and even with ions. Biomimetic binders and catalysts have been generated using “evolution in the test tube” of non-natural nucleotides or total chemical synthesis of (molecularly imprinted) polymers in order to substitute the biological pendants in bioanalysis. Y1 - 2015 SN - 2161-1009 VL - 4 IS - 2 ER - TY - THES A1 - Fuentes Taladriz, Paulina Andrea T1 - High-level production of the antimalarial drug precursor artemisinic acid in plastids and in vivo visualization of plastid-to-nucleus gene transfer Y1 - 2015 ER - TY - JOUR A1 - Blankenburg, Stefanie A1 - Balfanz, Sabine A1 - Hayashi, Y. A1 - Shigenobu, S. A1 - Miura, T. A1 - Baumann, Otto A1 - Baumann, Arnd A1 - Blenau, Wolfgang T1 - Cockroach GABA(B) receptor subtypes: Molecular characterization, pharmacological properties and tissue distribution JF - Neuropharmacology N2 - gamma-aminobutyric acid (GABA) is the predominant inhibitory neurotransmitter in the central nervous system (CNS). Its effects are mediated by either ionotropic GABA(A) receptors or metabotropic GABA(B) receptors. GABA(B) receptors regulate, via Gi/o, G-proteins, ion channels, and adenylyl cyclases. In humans, GABA(B) receptor subtypes are involved in the etiology of neurologic and psychiatric disorders. In arthropods, however, these members of the G-protein-coupled receptor family are only inadequately characterized. Interestingly, physiological data have revealed important functions of GABA(B) receptors in the American cockroach, Periplaneta americana. We have cloned cDNAs coding for putative GABA(B) receptor subtypes 1 and 2 of P. americana (PeaGB1 and PeaGB2). When both receptor proteins are co-expressed in mammalian cells, activation of the receptor heteromer with GABA leads to a dose-dependent decrease in cAMP production. The pharmacological profile differs from that of mammalian and Drosophila GABA(B) receptors. Western blot analyses with polyclonal antibodies have revealed the expression of PeaGB1 and PeaGB2 in the CNS of the American cockroach. In addition to the widespread distribution in the brain, PeaGB1 is expressed in salivary glands and male accessory glands. Notably, PeaGB1-like immunoreactivity has been detected in the GABAergic salivary neuron 2, suggesting that GABA(B) receptors act as autoreceptors in this neuron. KW - GABA(B) receptor KW - G-protein-coupled receptor KW - Periplaneta americana KW - Central nervous system KW - Adenylyl cyclase KW - Salivary gland Y1 - 2015 U6 - https://doi.org/10.1016/j.neuropharm.2014.08.022 SN - 0028-3908 SN - 1873-7064 VL - 88 SP - 134 EP - 144 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Geyer, Juliane A1 - Strixner, Lena A1 - Kreft, Stefan A1 - Jeltsch, Florian A1 - Ibisch, Pierre L. T1 - Adapting conservation to climate change: a case study on feasibility and implementation in Brandenburg, Germany JF - Regional environmental change N2 - Conservation actions need to account for global climate change and adapt to it. The body of the literature on adaptation options is growing rapidly, but their feasibility and current state of implementation are rarely assessed. We discussed the practicability of adaptation options with conservation managers analysing three fields of action: reducing the vulnerability of conservation management, reducing the vulnerability of conservation targets (i.e. biodiversity) and climate change mitigation. For all options, feasibility, current state of implementation and existing obstacles to implementation were analysed, using the Federal State of Brandenburg, Germany, as a case study. Practitioners considered a large number of options useful, most of which have already been implemented at least in part. Those options considered broadly implemented resemble mainly conventional measures of conservation without direct relation to climate change. Managers are facing several obstacles for adapting to climate change, including political reluctance to change, financial and staff shortages in conservation administrations and conflictive EU funding schemes in agriculture. A certain reluctance to act, due to the high degree of uncertainty with regard to climate change scenarios and impacts, is widespread. A lack of knowledge of appropriate methods such as adaptive management often inhibits the implementation of adaptation options in the field of planning and management. Based on the findings for Brandenburg, we generally conclude that it is necessary to focus in particular on options that help to reduce vulnerability of conservation management itself, i.e. those that enhance management effectiveness. For instance, adaptive and proactive risk management can be applied as a no-regrets option, independently from specific climate change scenarios or impacts, strengthening action under uncertainty. KW - Climate change KW - Adaptation options KW - Nature conservation management KW - Vulnerability Y1 - 2015 U6 - https://doi.org/10.1007/s10113-014-0609-9 SN - 1436-3798 SN - 1436-378X VL - 15 IS - 1 SP - 139 EP - 153 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Hamalainen, Anni A1 - Dammhahn, Melanie A1 - Aujard, Fabienne A1 - Kraus, Cornelia T1 - Losing grip: Senescent decline in physical strength in a small-bodied primate in captivity and in the wild JF - Experimental gerontology N2 - Muscle strength reflects physical functioning, declines at old age and predicts health and survival in humans and laboratory animals. Age-associated muscle deterioration causes loss of strength and may impair fitness of wild animals. However, the effects of age and life-history characteristics on muscle strength in wild animals are unknown. We investigated environment-and sex-specific patterns of physical functioning by measuring grip strength in wild and captive gray mouse lemurs. We expected more pronounced strength senescence in captivity due to condition-dependent, extrinsic mortality found in nature. Males were predicted to be stronger but potentially experience more severe senescence than females as predicted by life history theory. We found similar senescent declines in captive males and females as well as wild females, whereas wild males showed little decline, presumably due to their early mortality. Captive animals were generally weaker and showed earlier declines than wild animals. Unexpectedly, females tended to be stronger than males, especially in the reproductive season. Universal intrinsic mechanisms (e. g. sarcopenia) likely cause the similar patterns of strength loss across settings. The female advantage in muscle strength merits further study; it may follow higher reproductive investment by males, or be an adaptation associated with female social dominance. KW - Functional aging KW - Grip strength KW - Microcebus murinus KW - Natural population KW - Sarcopenia KW - Sex difference Y1 - 2015 U6 - https://doi.org/10.1016/j.exger.2014.11.017 SN - 0531-5565 SN - 1873-6815 VL - 61 SP - 54 EP - 61 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Makower, A. Katharina A1 - Schuurmans, J. Merijn A1 - Groth, Detlef A1 - Zilliges, Yvonne A1 - Matthijs, Hans C. P. A1 - Dittmann-Thünemann, Elke T1 - Transcriptomics-Aided dissection of the intracellular and extracellular roles of microcystin in microcystis aeruginosa PCC 7806 JF - Applied and environmental microbiology N2 - Recent studies have provided evidence for both intracellular and extracellular roles of the potent hepatotoxin microcystin (MC) in the bloom-forming cyanobacterium Microcystis. Here, we surveyed transcriptomes of the wild-type strain M. aeruginosa PCC 7806 and the microcystin-deficient Delta mcyB mutant under low light conditions with and without the addition of external MC of the LR variant (MC-LR). Transcriptomic data acquired by microarray and quantitative PCR revealed substantial differences in the relative expression of genes of the central intermediary metabolism, photosynthesis, and energy metabolism. In particular, the data provide evidence for a lower photosystem I (PSI)-to-photosystem II (PSII) ratio and a more pronounced carbon limitation in the microcystin-deficient mutant. Interestingly, only 6% of the transcriptional differences could be complemented by external microcystin-LR addition. This MC signaling effect was seen exclusively for genes of the secondary metabolism category. The orphan polyketide synthase gene cluster IPF38-51 was specifically downregulated in response to external MC-LR under low light. Our data suggest a hierarchical and light-dependent cross talk of secondary metabolites and support both an intracellular and an extracellular role of MC in Microcystis. Y1 - 2015 U6 - https://doi.org/10.1128/AEM.02601-14 SN - 0099-2240 SN - 1098-5336 VL - 81 IS - 2 SP - 544 EP - 554 PB - American Society for Microbiology CY - Washington ER - TY - JOUR A1 - Henry, Brian D. A1 - Neill, Daniel R. A1 - Becker, Katrin Anne A1 - Gore, Suzanna A1 - Bricio-Moreno, Laura A1 - Ziobro, Regan A1 - Edwards, Michael J. A1 - Muehlemann, Kathrin A1 - Steinmann, Joerg A1 - Kleuser, Burkhard A1 - Japtok, Lukasz A1 - Luginbuehl, Miriam A1 - Wolfmeier, Heidi A1 - Scherag, Andre A1 - Gulbins, Erich A1 - Kadioglu, Aras A1 - Draeger, Annette A1 - Babiychuk, Eduard B. T1 - Engineered liposomes sequester bacterial exotoxins and protect from severe invasive infections in mice JF - Nature biotechnology : the science and business of biotechnology N2 - Gram-positive bacterial pathogens that secrete cytotoxic pore-forming toxins, such as Staphylococcus aureus and Streptococcus pneumoniae, cause a substantial burden of disease. Inspired by the principles that govern natural toxin-host interactions, we have engineered artificial liposomes that are tailored to effectively compete with host cells for toxin binding. Liposome-bound toxins are unable to lyse mammalian cells in vitro. We use these artificial liposomes as decoy targets to sequester bacterial toxins that are produced during active infection in vivo. Administration of artificial liposomes within 10 h after infection rescues mice from septicemia caused by S. aureus and S. pneumoniae, whereas untreated mice die within 24-33 h. Furthermore, liposomes protect mice against invasive pneumococcal pneumonia. Composed exclusively of naturally occurring lipids, tailored liposomes are not bactericidal and could be used therapeutically either alone or in conjunction with antibiotics to combat bacterial infections and to minimize toxin-induced tissue damage that occurs during bacterial clearance. Y1 - 2015 U6 - https://doi.org/10.1038/nbt.3037 SN - 1087-0156 SN - 1546-1696 VL - 33 IS - 1 SP - 81 EP - U295 PB - Nature Publ. Group CY - New York ER - TY - JOUR A1 - Schopper, S. A1 - Muhlenbock, P. A1 - Sorensson, C. A1 - Hellborg, L. A1 - Lenman, M. A1 - Widell, S. A1 - Fettke, Jörg A1 - Andreasson, Erik T1 - Arabidopsis cytosolic alpha-glycan phosphorylase, PHS2, is important during carbohydrate imbalanced conditions JF - Plant biology N2 - Arabidopsis thaliana has two isoforms of alpha-glycan phosphorylase (EC 2.4.1.1), one residing in the plastid and the other in the cytosol. The cytosolic phosphorylase, PHS2, acts on soluble heteroglycans that constitute a part of the carbohydrate pool in a plant. This study aimed to define a physiological role for PHS2. Under standard growth conditions phs2 knock-out mutants do not show any clear growth phenotype, and we hypothesised that during low-light conditions where carbohydrate imbalance is perturbed, this enzyme is important. Soil-grown phs2 mutant plants developed leaf lesions when placed in very low light. Analysis of soluble heteroglycan (SHG) levels showed that the amount of glucose residues in SHG was higher in the phs2 mutant compared to wild-type plants. Furthermore, a standard senescence assay from soil-grown phs2 mutant plants showed that leaves senesced significantly faster in darkness than the wild-type leaves. We also found decreased hypocotyl extension in in vitro-grown phs2 mutant seedlings when grown for long time in darkness at 6 degrees C. We conclude that PHS2 activity is important in the adult stage during low-light conditions and senescence, as well as during prolonged seedling development when carbohydrate levels are unbalanced. KW - Lesion formation KW - low light stress conditions KW - phosphorylase KW - PHS2 KW - senescence KW - soluble heteroglycans Y1 - 2015 U6 - https://doi.org/10.1111/plb.12190 SN - 1435-8603 SN - 1438-8677 VL - 17 IS - 1 SP - 74 EP - 80 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Caron, Maria Mercedes A1 - De Frenne, Pieter A1 - Brunet, J. A1 - Chabrerie, Olivier A1 - Cousins, S. A. O. A1 - De Backer, L. A1 - Decocq, G. A1 - Diekmann, M. A1 - Heinken, Thilo A1 - Kolb, A. A1 - Naaf, T. A1 - Plue, J. A1 - Selvi, Federico A1 - Strimbeck, G. R. A1 - Wulf, Monika A1 - Verheyen, Kris T1 - Interacting effects of warming and drought on regeneration and early growth of Acer pseudoplatanus and A. platanoides JF - Plant biology N2 - Climate change is acting on several aspects of plant life cycles, including the sexual reproductive stage, which is considered amongst the most sensitive life-cycle phases. In temperate forests, it is expected that climate change will lead to a compositional change in community structure due to changes in the dominance of currently more abundant forest tree species. Increasing our understanding of the effects of climate change on currently secondary tree species recruitment is therefore important to better understand and forecast population and community dynamics in forests. Here, we analyse the interactive effects of rising temperatures and soil moisture reduction on germination, seedling survival and early growth of two important secondary European tree species, Acer pseudoplatanus and A.platanoides. Additionally, we analyse the effect of the temperature experienced by the mother tree during seed production by collecting seeds of both species along a 2200-km long latitudinal gradient. For most of the responses, A.platanoides showed higher sensitivity to the treatments applied, and especially to its joint manipulation, which for some variables resulted in additive effects while for others only partial compensation. In both species, germination and survival decreased with rising temperatures and/or soil moisture reduction while early growth decreased with declining soil moisture content. We conclude that although A.platanoides germination and survival were more affected after the applied treatments, its initial higher germination and larger seedlings might allow this species to be relatively more successful than A.pseudoplatanus in the face of climate change. KW - Acer platanoides KW - Acer pseudoplatanus KW - climate change KW - drought KW - reproduction KW - seed KW - temperature Y1 - 2015 U6 - https://doi.org/10.1111/plb.12177 SN - 1435-8603 SN - 1438-8677 VL - 17 IS - 1 SP - 52 EP - 62 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Kiefer, Christian S. A1 - Claes, Andrea R. A1 - Nzayisenga, Jean-Claude A1 - Pietra, Stefano A1 - Stanislas, Thomas A1 - Hueser, Anke A1 - Ikeda, Yoshihisa A1 - Grebe, Markus T1 - Arabidopsis AIP1-2 restricted by WER-mediated patterning modulates planar polarity JF - Development : Company of Biologists N2 - The coordination of cell polarity within the plane of the tissue layer (planar polarity) is crucial for the development of diverse multicellular organisms. Small Rac/Rho-family GTPases and the actin cytoskeleton contribute to planar polarity formation at sites of polarity establishment in animals and plants. Yet, upstream pathways coordinating planar polarity differ strikingly between kingdoms. In the root of Arabidopsis thaliana, a concentration gradient of the phytohormone auxin coordinates polar recruitment of Rho-of-plant (ROP) to sites of polar epidermal hair initiation. However, little is known about cytoskeletal components and interactions that contribute to this planar polarity or about their relation to the patterning machinery. Here, we show that ACTIN7 (ACT7) represents a main actin isoform required for planar polarity of root hair positioning, interacting with the negative modulator ACTIN-INTERACTING PROTEIN1-2 (AIP1-2). ACT7, AIP1-2 and their genetic interaction are required for coordinated planar polarity of ROP downstream of ethylene signalling. Strikingly, AIP1-2 displays hair cell file-enriched expression, restricted by WEREWOLF (WER)-dependent patterning and modified by ethylene and auxin action. Hence, our findings reveal AIP1-2, expressed under control of the WER-dependent patterning machinery and the ethylene signalling pathway, as a modulator of actin-mediated planar polarity. KW - AIP1 KW - Arabidopsis KW - WEREWOLF KW - Actin KW - Patterning KW - Planar polarity Y1 - 2015 U6 - https://doi.org/10.1242/dev.111013 SN - 0950-1991 SN - 1477-9129 VL - 142 IS - 1 SP - 151 EP - 161 PB - Company of Biologists Limited CY - Cambridge ER -