TY - THES A1 - Gebser, Martin T1 - Proof theory and algorithms for answer set programming T1 - Beweistheorie und Algorithmen für die Antwortmengenprogrammierung N2 - Answer Set Programming (ASP) is an emerging paradigm for declarative programming, in which a computational problem is specified by a logic program such that particular models, called answer sets, match solutions. ASP faces a growing range of applications, demanding for high-performance tools able to solve complex problems. ASP integrates ideas from a variety of neighboring fields. In particular, automated techniques to search for answer sets are inspired by Boolean Satisfiability (SAT) solving approaches. While the latter have firm proof-theoretic foundations, ASP lacks formal frameworks for characterizing and comparing solving methods. Furthermore, sophisticated search patterns of modern SAT solvers, successfully applied in areas like, e.g., model checking and verification, are not yet established in ASP solving. We address these deficiencies by, for one, providing proof-theoretic frameworks that allow for characterizing, comparing, and analyzing approaches to answer set computation. For another, we devise modern ASP solving algorithms that integrate and extend state-of-the-art techniques for Boolean constraint solving. We thus contribute to the understanding of existing ASP solving approaches and their interconnections as well as to their enhancement by incorporating sophisticated search patterns. The central idea of our approach is to identify atomic as well as composite constituents of a propositional logic program with Boolean variables. This enables us to describe fundamental inference steps, and to selectively combine them in proof-theoretic characterizations of various ASP solving methods. In particular, we show that different concepts of case analyses applied by existing ASP solvers implicate mutual exponential separations regarding their best-case complexities. We also develop a generic proof-theoretic framework amenable to language extensions, and we point out that exponential separations can likewise be obtained due to case analyses on them. We further exploit fundamental inference steps to derive Boolean constraints characterizing answer sets. They enable the conception of ASP solving algorithms including search patterns of modern SAT solvers, while also allowing for direct technology transfers between the areas of ASP and SAT solving. Beyond the search for one answer set of a logic program, we address the enumeration of answer sets and their projections to a subvocabulary, respectively. The algorithms we develop enable repetition-free enumeration in polynomial space without being intrusive, i.e., they do not necessitate any modifications of computations before an answer set is found. Our approach to ASP solving is implemented in clasp, a state-of-the-art Boolean constraint solver that has successfully participated in recent solver competitions. Although we do here not address the implementation techniques of clasp or all of its features, we present the principles of its success in the context of ASP solving. N2 - Antwortmengenprogrammierung (engl. Answer Set Programming; ASP) ist ein Paradigma zum deklarativen Problemlösen, wobei Problemstellungen durch logische Programme beschrieben werden, sodass bestimmte Modelle, Antwortmengen genannt, zu Lösungen korrespondieren. Die zunehmenden praktischen Anwendungen von ASP verlangen nach performanten Werkzeugen zum Lösen komplexer Problemstellungen. ASP integriert diverse Konzepte aus verwandten Bereichen. Insbesondere sind automatisierte Techniken für die Suche nach Antwortmengen durch Verfahren zum Lösen des aussagenlogischen Erfüllbarkeitsproblems (engl. Boolean Satisfiability; SAT) inspiriert. Letztere beruhen auf soliden beweistheoretischen Grundlagen, wohingegen es für ASP kaum formale Systeme gibt, um Lösungsmethoden einheitlich zu beschreiben und miteinander zu vergleichen. Weiterhin basiert der Erfolg moderner Verfahren zum Lösen von SAT entscheidend auf fortgeschrittenen Suchtechniken, die in gängigen Methoden zur Antwortmengenberechnung nicht etabliert sind. Diese Arbeit entwickelt beweistheoretische Grundlagen und fortgeschrittene Suchtechniken im Kontext der Antwortmengenberechnung. Unsere formalen Beweissysteme ermöglichen die Charakterisierung, den Vergleich und die Analyse vorhandener Lösungsmethoden für ASP. Außerdem entwerfen wir moderne Verfahren zum Lösen von ASP, die fortgeschrittene Suchtechniken aus dem SAT-Bereich integrieren und erweitern. Damit trägt diese Arbeit sowohl zum tieferen Verständnis von Lösungsmethoden für ASP und ihrer Beziehungen untereinander als auch zu ihrer Verbesserung durch die Erschließung fortgeschrittener Suchtechniken bei. Die zentrale Idee unseres Ansatzes besteht darin, Atome und komposite Konstrukte innerhalb von logischen Programmen gleichermaßen mit aussagenlogischen Variablen zu assoziieren. Dies ermöglicht die Isolierung fundamentaler Inferenzschritte, die wir in formalen Charakterisierungen von Lösungsmethoden für ASP selektiv miteinander kombinieren können. Darauf aufbauend zeigen wir, dass unterschiedliche Einschränkungen von Fallunterscheidungen zwangsläufig zu exponentiellen Effizienzunterschieden zwischen den charakterisierten Methoden führen. Wir generalisieren unseren beweistheoretischen Ansatz auf logische Programme mit erweiterten Sprachkonstrukten und weisen analytisch nach, dass das Treffen bzw. Unterlassen von Fallunterscheidungen auf solchen Konstrukten ebenfalls exponentielle Effizienzunterschiede bedingen kann. Die zuvor beschriebenen fundamentalen Inferenzschritte nutzen wir zur Extraktion inhärenter Bedingungen, denen Antwortmengen genügen müssen. Damit schaffen wir eine Grundlage für den Entwurf moderner Lösungsmethoden für ASP, die fortgeschrittene, ursprünglich für SAT konzipierte, Suchtechniken mit einschließen und darüber hinaus einen transparenten Technologietransfer zwischen Verfahren zum Lösen von ASP und SAT erlauben. Neben der Suche nach einer Antwortmenge behandeln wir ihre Aufzählung, sowohl für gesamte Antwortmengen als auch für Projektionen auf ein Subvokabular. Hierfür entwickeln wir neuartige Methoden, die wiederholungsfreies Aufzählen in polynomiellem Platz ermöglichen, ohne die Suche zu beeinflussen und ggf. zu behindern, bevor Antwortmengen berechnet wurden. KW - Wissensrepräsentation und -verarbeitung KW - Antwortmengenprogrammierung KW - Beweistheorie KW - Algorithmen KW - Knowledge Representation and Reasoning KW - Answer Set Programming KW - Proof Theory KW - Algorithms Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-55425 ER - TY - GEN A1 - Gebser, Martin A1 - Kaminski, Roland A1 - Schaub, Torsten H. T1 - Complex optimization in answer set programming T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Preference handling and optimization are indispensable means for addressing nontrivial applications in Answer Set Programming (ASP). However, their implementation becomes difficult whenever they bring about a significant increase in computational complexity. As a consequence, existing ASP systems do not offer complex optimization capacities, supporting, for instance, inclusion-based minimization or Pareto efficiency. Rather, such complex criteria are typically addressed by resorting to dedicated modeling techniques, like saturation. Unlike the ease of common ASP modeling, however, these techniques are rather involved and hardly usable by ASP laymen. We address this problem by developing a general implementation technique by means of meta-prpogramming, thus reusing existing ASP systems to capture various forms of qualitative preferences among answer sets. In this way, complex preferences and optimization capacities become readily available for ASP applications. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 554 KW - answer set programming KW - preference handling KW - complex optimization KW - meta-programming Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-412436 SN - 1866-8372 IS - 554 ER - TY - GEN A1 - Gebser, Martin A1 - Lee, Joohyung A1 - Lierler, Yuliya T1 - On elementary loops of logic programs T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Using the notion of an elementary loop, Gebser and Schaub (2005. Proceedings of the Eighth International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’05 ), 53–65) refined the theorem on loop formulas attributable to Lin and Zhao (2004) by considering loop formulas of elementary loops only. In this paper, we reformulate the definition of an elementary loop, extend it to disjunctive programs, and study several properties of elementary loops, including how maximal elementary loops are related to minimal unfounded sets. The results provide useful insights into the stable model semantics in terms of elementary loops. For a nondisjunctive program, using a graph-theoretic characterization of an elementary loop, we show that the problem of recognizing an elementary loop is tractable. On the other hand, we also show that the corresponding problem is coNP-complete for a disjunctive program. Based on the notion of an elementary loop, we present the class of Head-Elementary-loop-Free (HEF) programs, which strictly generalizes the class of Head-Cycle-Free (HCF) programs attributable to Ben-Eliyahu and Dechter (1994. Annals of Mathematics and Artificial Intelligence 12, 53–87). Like an HCF program, an HEF program can be turned into an equivalent nondisjunctive program in polynomial time by shifting head atoms into the body. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 566 KW - stable model semantics KW - loop formulas KW - unfounded sets Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-413091 SN - 1866-8372 IS - 566 ER - TY - GEN A1 - Gebser, Martin A1 - Schaub, Torsten H. A1 - Thiele, Sven A1 - Veber, Philippe T1 - Detecting inconsistencies in large biological networks with answer set programming T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - We introduce an approach to detecting inconsistencies in large biological networks by using answer set programming. To this end, we build upon a recently proposed notion of consistency between biochemical/genetic reactions and high-throughput profiles of cell activity. We then present an approach based on answer set programming to check the consistency of large-scale data sets. Moreover, we extend this methodology to provide explanations for inconsistencies by determining minimal representations of conflicts. In practice, this can be used to identify unreliable data or to indicate missing reactions. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 561 KW - answer set programming KW - bioinformatics KW - consistency KW - diagnosis Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-412467 SN - 1866-8372 IS - 561 ER -