TY - THES A1 - Blenau, Wolfgang T1 - Aminerge Signaltransduktion bei Insekten T1 - Aminergic signal transduction in insects N2 - Biogene Amine sind kleine organische Verbindungen, die sowohl bei Wirbeltieren als auch bei Wirbellosen als Neurotransmitter, Neuromodulatoren und/oder Neurohormone wirken können. Sie bilden eine bedeutende Gruppe von Botenstoffen und entfalten ihre Wirkungen über die Bindung an eine bestimmte Klasse von Rezeptorproteinen, die als G-Protein-gekoppelte Rezeptoren bezeichnet werden. Bei Insekten gehören zur Substanzklasse der biogenen Amine die Botenstoffe Dopamin, Tyramin, Octopamin, Serotonin und Histamin. Neben vielen anderen Wirkung ist z.B. gezeigt worden, daß einige dieser biogenen Amine bei der Honigbiene (Apis mellifera) die Geschmacksempfindlichkeit für Zuckerwasser-Reize modulieren können. Ich habe verschiedene Aspekte der aminergen Signaltransduktion an den „Modellorganismen“ Honigbiene und Amerikanische Großschabe (Periplaneta americana) untersucht. Aus der Honigbiene, einem „Modellorganismus“ für das Studium von Lern- und Gedächtnisvorgängen, wurden zwei Dopamin-Rezeptoren, ein Tyramin-Rezeptor, ein Octopamin-Rezeptor und ein Serotonin-Rezeptor charakterisiert. Die Rezeptoren wurden in kultivierten Säugerzellen exprimiert, um ihre pharmakologischen und funktionellen Eigenschaften (Kopplung an intrazelluläre Botenstoffwege) zu analysieren. Weiterhin wurde mit Hilfe verschiedener Techniken (RT-PCR, Northern-Blotting, in situ-Hybridisierung) untersucht, wo und wann während der Entwicklung die entsprechenden Rezeptor-mRNAs im Gehirn der Honigbiene exprimiert werden. Als Modellobjekt zur Untersuchung der zellulären Wirkungen biogener Amine wurden die Speicheldrüsen der Amerikanischen Großschabe genutzt. An isolierten Speicheldrüsen läßt sich sowohl mit Dopamin als auch mit Serotonin Speichelproduktion auslösen, wobei Speichelarten unterschiedlicher Zusammensetzung gebildet werden. Dopamin induziert die Bildung eines völlig proteinfreien, wäßrigen Speichels. Serotonin bewirkt die Sekretion eines proteinhaltigen Speichels. Die Serotonin-induzierte Proteinsekretion wird durch eine Erhöhung der Konzentration des intrazellulären Botenstoffs cAMP vermittelt. Es wurden die pharmakologischen Eigenschaften der Dopamin-Rezeptoren der Schaben-Speicheldrüsen untersucht sowie mit der molekularen Charakterisierung putativer aminerger Rezeptoren der Schabe begonnen. Weiterhin habe ich das ebony-Gen der Schabe charakterisiert. Dieses Gen kodiert für ein Enzym, das wahrscheinlich bei der Schabe (wie bei anderen Insekten) an der Inaktivierung biogener Amine beteiligt ist und im Gehirn und in den Speicheldrüsen der Schabe exprimiert wird. N2 - Biogenic amines are small organic compounds that act as neurotransmitters, neuromodulators and/or neurohormones in vertebrates and in invertebrates. They form an important group of messenger substances and mediate their diverse effects by binding to membrane receptors that primarily belong to the large gene-family of G protein-coupled receptors. In insects, the group of biogenic amine messengers consists of five members: dopamine, tyramine, octopamine, serotonin, and histamine. Besides many other effects, some of these biogenic amines were shown, for example, to modulate gustatory sensitivity to sucrose stimuli in the honeybee (Apis mellifera). I have investigated various aspects of the aminergic signal transduction in the “model organisms” honeybee and American cockroach (Periplaneta americana). So far, I have characterized two dopamine receptors, a tyramine receptor, an octopamine receptor and a serotonin receptor of the honeybee, which is well-known for its learning and memory capacities. The receptors where expressed in cultivated mammalian cells in order to analyze their pharmacological and functional (i.e., second messenger coupling) properties. The spatiotemporal expression patterns of the respective receptor mRNA were investigated in the honeybee brain by using different techniques (RT PCR, Northern blotting, in situ-hybridization). The salivary glands of the American cockroach were used as a model object in order to investigate the cellular effects of biogenic amines. Both dopamine and serotonin trigger salivary secretion in isolated salivary glands. The quality of the secreted saliva is, however, different. Stimulation of the glands by serotonin results in the production of a protein-rich saliva, whereas stimulation by dopamine results in saliva that is protein-free. Serotonin-induced protein secretion is mediated by an increase in the intracellular concentration of cAMP. The pharmacological properties of dopamine receptors associated with cockroach salivary glands were investigated and the molecular characterization of putative aminergic receptors of the cockroach was initiated. Furthermore, I have characterized the ebony gene of the cockroach. This gene encodes an enzyme that is probably involved in the inactivation of biogenic amines in the cockroach (as in other insects). The ebony gene is expressed in the brain and in the salivary glands of the cockroach. KW - Neurotransmitter-Rezeptor KW - Dopamin KW - Tyramin KW - Octopamin KW - Serotonin KW - Insekten KW - Biene KW - Amerikanische Schabe KW - Biogene Amine KW - G-Protein-gekoppelte-Rezeptoren KW - biogenic amines KW - G protein-coupled receptors KW - honeybee KW - salivary gland Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-7568 ER - TY - THES A1 - Dreyer, Ingo T1 - Biophysikalische und molekulare Grundlagen der Regulation des Kaliumtransports in Pflanzen T1 - Biophysical and molecular bases of the regulation of potassium transport in plants N2 - Kaliumionen (K+) sind die am häufigsten vorkommenden anorganischen Kationen in Pflanzen. Gemessen am Trockengewicht kann ihr Anteil bis zu 10% ausmachen. Kaliumionen übernehmen wichtige Funktionen in verschiedenen Prozessen in der Pflanze. So sind sie z.B. essentiell für das Wachstum und für den Stoffwechsel. Viele wichtige Enzyme arbeiten optimal bei einer K+ Konzentration im Bereich von 100 mM. Aus diesem Grund halten Pflanzenzellen in ihren Kompartimenten, die am Stoffwechsel beteiligt sind, eine kontrollierte Kaliumkonzentration von etwa 100 mM aufrecht. Die Aufnahme von Kaliumionen aus dem Erdreich und deren Transport innerhalb der Pflanze und innerhalb einer Pflanzenzelle wird durch verschiedene Kaliumtransportproteine ermöglicht. Die Aufrechterhaltung einer stabilen K+ Konzentration ist jedoch nur möglich, wenn die Aktivität dieser Transportproteine einer strikten Kontrolle unterliegt. Die Prozesse, die die Transportproteine regulieren, sind bis heute nur ansatzweise verstanden. Detailliertere Kenntnisse auf diesem Gebiet sind aber von zentraler Bedeutung für das Verständnis der Integration der Transportproteine in das komplexe System des pflanzlichen Organismus. In dieser Habilitationsschrift werden eigene Publikationen zusammenfassend dargestellt, in denen die Untersuchungen verschiedener Regulationsmechanismen pflanzlicher Kaliumkanäle beschrieben werden. Diese Untersuchungen umfassen ein Spektrum aus verschiedenen proteinbiochemischen, biophysikalischen und pflanzenphysiologischen Analysen. Um die Regulationsmechanismen grundlegend zu verstehen, werden zum einen ihre strukturellen und molekularen Besonderheiten untersucht. Zum anderen werden die biophysikalischen und reaktionskinetischen Zusammenhänge der Regulationsmechanismen analysiert. Die gewonnenen Erkenntnisse erlauben eine neue, detailliertere Interpretation der physiologischen Rolle der Kaliumtransportproteine in der Pflanze. N2 - Potassium ions (K+) are the most abundant anorganic cations in plants. They can constitute up to 10% of the plant dry weight. Potassium ions play important roles in different processes in the plant. For example, they are essential for growth and for metabolism. Many important enzymes work optimally at a K+ concentration within the range of about 100 mM. Therefore, plant cells maintain a controlled potassium concentration of approximately 100 mM in their compartments, which are involved in metabolism. The uptake of potassium ions from the soil and their transport within the plant and within a plant cell is accomplished by different potassium transporter proteins. However, the maintenance of a stable K+ concentration is only possible if the activity of these transporter proteins is subject to strict control. Up today the processes regulating the transporter proteins are only rudimentarily understood. More detailed knowledge in this area is, however, of central importance for the understanding of the integration of the transporter proteins into the complex system of the plant organism. This Habilitation-thesis summarizes own publications, in which the investigations of different regulation mechanisms of plant potassium channels are described. These investigations cover a spectrum of different protein-biochemical, biophysical and plant-physiological analyses. In order to understand the regulation mechanisms, on the one hand their structural and molecular characteristics are examined. On the other hand the biophysical and reaction-kinetic properties of the regulation mechanisms are analyzed. The obtained insights allow a new, more detailed view on the physiological role of potassium transporter proteins in the plant. KW - Kaliumion KW - Ionenkanal KW - Elektrophysiologie KW - Biophysik KW - Schmalwand KW - potassium ions KW - ion channel KW - electrophysiology KW - biophysics KW - Arabidopsis Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-7708 ER - TY - THES A1 - Groth, Thomas T1 - Die Bedeutung der Volumen- und Oberflächeneigenschaften von Biomaterialien für die Adsorption von Proteinen und nachfolgende zelluläre Reaktionen N2 - Es ist schon seit längerer Zeit bekannt, dass nach Kontakt des Biomaterials mit der biologischen Umgebung bei Implantation oder extrakorporaler Wechselwirkung zunächst Proteine aus dem umgebenden Milieu adsorbiert werden, wobei die Oberflächeneigenschaften des Materials die Zusammensetzung der Proteinschicht und die Konformation der darin enthaltenden Proteine determinieren. Die nachfolgende Wechselwirkung von Zellen mit dem Material wird deshalb i.d.R. von der Adsorbatschicht vermittelt. Der Einfluss der Oberflächen auf die Zusammensetzung und Konformation der Proteine und die nachfolgende Wechselwirkung mit Zellen ist von besonderem Interesse, da einerseits eine Aussage über die Anwendbarkeit ermöglicht wird, andererseits Erkenntnisse über diese Zusammenhänge für die Entwicklung neuer Materialien mit verbesserter Biokompatibilität genutzt werden können. In der vorliegenden Habilitationsschrift wurde deshalb der Einfluss der Zusammensetzung von Polymeren bzw. von deren Oberflächeneigenschaften auf die Adsorption von Proteinen, den Aktivitätszustand der plasmatischen Gerinnung und die Adhäsion von Zellen untersucht. Dabei wurden auch Möglichkeiten zur Beeinflussung dieser Vorgänge über eine Veränderung der Volumenzusammensetzung oder durch Oberflächenmodifikationen von Biomaterialien vorgestellt. Erkenntnisse aus diesen Arbeiten konnten für die Entwicklung von Membranen für Biohybrid-Organe genutzt werden. N2 - The implantation of biomaterials or the contact of blood with extracorporal devices leads to the rapid adsorption of proteins from the surrounding biological fluids. The surface properties of materials determine the composition of the adsorption layer and the conformation of adsorbed proteins. Hence, the subsequent interaction of cells with biomaterials is dependent on the adsorption layer of proteins. The detailed knowledge on the role of surface properties in protein adsorption and cellular interactions is a useful means to learn about the biomedical applicability of materials and to develop novel materials with improved biocompatibility. The thesis describes the influence of polymer composition and surface properties on protein adsorption, the activation of blood clotting and adhesion of cells. The thesis presents options to modify the reactions of the biological system by the modification of bulk or surface composition of polymers. Results of these studies have been used to develop polymer membranes for biohybrid organs. KW - Biomaterialien KW - Polymere KW - Protein Adsorption KW - Zelladhäsion KW - Biohybride Organe KW - biomaterials KW - polymers KW - protein adsorption KW - cell adhesion KW - biohybrid organs Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-0001022 ER - TY - THES A1 - Guill, Christian T1 - Structure, stability and functioning of food webs T1 - Struktur, Stabilität und Funktion von Nahrungsnetzen N2 - In this thesis, a collection of studies is presented that advance research on complex food webs in several directions. Food webs, as the networks of predator-prey interactions in ecosystems, are responsible for distributing the resources every organism needs to stay alive. They are thus central to our understanding of the mechanisms that support biodiversity, which in the face of increasing severity of anthropogenic global change and accelerated species loss is of highest importance, not least for our own well-being. The studies in the first part of the thesis are concerned with general mechanisms that determine the structure and stability of food webs. It is shown how the allometric scaling of metabolic rates with the species' body masses supports their persistence in size-structured food webs (where predators are larger than their prey), and how this interacts with the adaptive adjustment of foraging efforts by consumer species to create stable food webs with a large number of coexisting species. The importance of the master trait body mass for structuring communities is further exemplified by demonstrating that the specific way the body masses of species engaging in empirically documented predator-prey interactions affect the predator's feeding rate dampens population oscillations, thereby helping both species to survive. In the first part of the thesis it is also shown that in order to understand certain phenomena of population dynamics, it may be necessary to not only take the interactions of a focal species with other species into account, but to also consider the internal structure of the population. This can refer for example to different abundances of age cohorts or developmental stages, or the way individuals of different age or stage interact with other species. Building on these general insights, the second part of the thesis is devoted to exploring the consequences of anthropogenic global change on the persistence of species. It is first shown that warming decreases diversity in size-structured food webs. This is due to starvation of large predators on higher trophic levels, which suffer from a mismatch between their respiration and ingestion rates when temperature increases. In host-parasitoid networks, which are not size-structured, warming does not have these negative effects, but eutrophication destabilises the systems by inducing detrimental population oscillations. In further studies, the effect of habitat change is addressed. On the level of individual patches, increasing isolation of habitat patches has a similar effect as warming, as it leads to decreasing diversity due to the extinction of predators on higher trophic levels. In this case it is caused by dispersal mortality of smaller and therefore less mobile species on lower trophic levels, meaning that an increasing fraction of their biomass production is lost to the inhospitable matrix surrounding the habitat patches as they become more isolated. It is further shown that increasing habitat isolation desynchronises population oscillations between the patches, which in itself helps species to persist by dampening fluctuations on the landscape level. However, this is counteracted by an increasing strength of local population oscillations fuelled by an indirect effect of dispersal mortality on the feeding interactions. Last, a study is presented that introduces a novel mechanism for supporting diversity in metacommunities. It builds on the self-organised formation of spatial biomass patterns in the landscape, which leads to the emergence of spatio-temporally varying selection pressures that keep local communities permanently out of equilibrium and force them to continuously adapt. Because this mechanism relies on the spatial extension of the metacommunity, it is also sensitive to habitat change. In the third part of the thesis, the consequences of biodiversity for the functioning of ecosystems are explored. The studies focus on standing stock biomass, biomass production, and trophic transfer efficiency as ecosystem functions. It is first shown that increasing the diversity of animal communities increases the total rate of intra-guild predation. However, the total biomass stock of the animal communities increases nevertheless, which also increases their exploitative pressure on the underlying plant communities. Despite this, the plant communities can maintain their standing stock biomass due to a shift of the body size spectra of both animal and plant communities towards larger species with a lower specific respiration rate. In another study it is further demonstrated that the generally positive relationship between diversity and the above mentioned ecosystem functions becomes steeper when not only the feeding interactions but also the numerous non-trophic interactions (like predator interference or competition for space) between the species of an ecosystem are taken into account. Finally, two studies are presented that demonstrate the power of functional diversity as explanatory variable. It is interpreted as the range spanned by functional traits of the species that determine their interactions. This approach allows to mechanistically understand how the ecosystem functioning of food webs with multiple trophic levels is affected by all parts of the food web and why a high functional diversity is required for efficient transportation of energy from primary producers to the top predators. The general discussion draws some synthesising conclusions, e.g. on the predictive power of ecosystem functioning to explain diversity, and provides an outlook on future research directions. N2 - In dieser Habilitationsschrift wird eine Zusammenstellung wissenschaftlicher Arbeiten präsentiert, die die Forschung zu komplexen Nahrungsnetzen in verschiedene Richtungen weiterentwickeln. Nahrungsnetze sind die Netzwerke der Räuber-Beute-Interaktionen in einem Ökosystem und bestimmen damit über die Verteilung der von allen Arten zum Überleben benötigten Ressourcen. Sie sind daher ein zentrales Konzept für das Verständnis der Mechanismen, die die Koexistenz einer Vielzahl von Arten ermöglichen. Angesichts der zunehmenden Intensität des anthropogenen globalen Wandels und sich weiter beschleunigendem Artensterben ist ein solches Verständnis von zentraler Bedeutung, nicht zuletzt auch für das menschliche Wohlergehen. Die Studien im ersten Teil der Thesis befassen sich mit generellen Mechanismen, die die Struktur und Stabilität von Nahrungsnetzen bestimmen. Es wird gezeigt, wie die allometrische Skalierung metabolischer Raten mit der Körpermasse der Individuen ihre Persistenz in größenstrukturierten Nahrungsnetzen unterstützt, und wie dies mit dem adaptiven Jagdverhalten von Räubern interagiert um stabile Nahrungsnetzstrukturen zu erzeugen. Basierend auf der Analyse empirisch dokumentierter Räuber-Beute-Paare wird zudem gezeigt, dass das Körpergrößenverhältnis von Räuber- und Beutearten deren Interaktionsstärke so beeinflusst, dass Populationsoszillationen stabilisiert werden. Weitere Studien demonstrieren, dass es zum Verständnis bestimmter populationsdynamischer Phänomene notwendig sein kann, die interne Struktur der betrachteten Populationen (z.B. die Größe von Alterskohorten) zu berücksichtigen. Auf diesen allgemeinen Erkenntnissen aufbauend werden im zweiten Teil der Habilitationsschrift Studien vorgestellt, die sich mit den Auswirkungen des anthropogenen globalen Wandels auf die Persistenz von Arten befassen. Erwärmung reduziert die Diversität in größenstrukturierten Nahrungsnetzen, indem sie zum Aussterben großer Räuberarten führt. Dies geschieht dadurch, dass die Respirationsrate wechselwarmer Tiere bei Erwärmung schneller ansteigt als ihre maximale Fraßrate. In Parasitoid-Wirt-Netzwerken mit flacher Größenstruktur hat Erwärmung keinen derartigen negativen Effekt, allerdings führt dort Eutrophierung durch die Induktion starker Populationsoszillationen zu Destabilisierung und Artensterben. In weiteren Studien werden die Auswirkungen von Habitatveränderung untersucht. Analog zur Erwärmung führt zunehmende Habitatisolation in den einzelnen Habitatflecken zu einem Rückgang der Diversität aufgrund des Aussterbens von großen Räuberarten. In diesem Fall wird das durch die Zunahme der Migrationsmortalität kleinerer und daher weniger mobiler Arten verursacht, welche dazu führt, dass ein immer größerer Anteil der Biomassenproduktion dieser Arten an die lebensfeindliche Matrix zwischen den Habitatflecken verloren geht. Es wird weiterhin gezeigt, dass zunehmende Isolation zur Desynchronisierung von Populationsoszillationen zwischen den einzelnen Habitatflecken führt. Allerdings führt die Zunahme der Wanderungsmortalität aufgrund eines indirekten Effektes auf die Fraßraten in den Habitatflecken zu einer Verstärkung der lokalen Populationsoszillationen, was den positiven Effekt der Desynchronisierung ausgleicht. Zuletzt wird in diesem Abschnitt ein neuartiger Mechanismus vorgestellt, der die Diversität in Meta-Gemeinschaften unterstützen kann. Er basiert auf selbstorganisierter Bildung räumlicher Muster in der Biomassenverteilung der Arten. Diese Muster erzeugen räumlich-zeitlich fluktuierende Selektionsdrücke, die die lokalen Artengemeinschaften in einem permanenten Nichtgleichgewichtszustand halten und dazu zwingen, sich ständig neu anzupassen. Da dieser Mechanismus auf der räumlichen Ausdehnung der Metagemeinschaften basiert, kann er ebenfalls empfindlich auf Habitatveränderungen reagieren. Im dritten Teil der Habilitationsschrift werden die Effekte von Biodiversität auf Ökosystemfunktionen untersucht. Die Studien beziehen sich dabei vor allem auf Bestand und Produktionsrate von Biomasse sowie auf die trophische Transfereffizienz. Es wird gezeigt, dass zunehmende Diversität von Tiergemeinschaften eine Verschiebung der Größenspektren von Pflanzen- und Tiergemeinschaften hin zu größeren Arten mit geringerer spezifischer Respirationsrate bewirkt, wodurch es den Pflanzengemeinschaften möglich wird, ihren Biomassenbestand trotz erhöhtem Fraßdruck zu erhalten. In einer weiteren Studie wird gezeigt, dass der im Allgemeinen positive Zusammenhang zwischen Biodiversität und den genannten Ökosystemfunktionen verstärkt wird, wenn neben den Fraßbeziehungen der Arten auch die zahlreichen weiteren Interaktionsmöglichkeiten der Arten (wie zum Beispiel Flächenkonkurrenz sessiler Arten) berücksichtigt werden. Abschließend werden zwei Studien präsentiert, auf funktioneller Diversität als zentraler erklärender Variable beruhen. Diese wird interpretiert als der Wertebereich, den funktionelle Merkmale, die die Interaktionen der Arten bestimmen, überspannen. Dieser Ansatz erlaubt es, mechanistisch nachzuvollziehen, wie die ökologischen Funktionen von Nahrungsnetzen von den einzelnen Teilen der Netzwerke beeinflusst werden, und warum eine hohe funktionelle Diversität für den effizienten Transport der Biomasse von den Primärproduzenten zu den Räubern an der Spitze der Nahrungskette notwendig ist. In der allgemeinen Diskussion werden einige zusammenfassende Schlussfolgerungen gezogen, die zum Beispiel die Vorhersagekraft von Ökosystemfunktionen zum Erklären der Diversität betreffen, und es wird ein Ausblick auf künftige Forschungsansätze gegeben. KW - ecology KW - food webs KW - biodiversity KW - anthropogenic global change KW - metacommunities KW - ecosystem functioning KW - functional diversity KW - Ökologie KW - Nahrungsnetze KW - Biodiversität KW - anthropogener globaler Wandel KW - Metagemeinschaften KW - Ökosystemfunktionen KW - funktionelle Diversität Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-561153 ER - TY - THES A1 - Kopka, Joachim T1 - Applied metabolome analysis : exploration, development and application of gas chromatography-mass spectrometry based metabolite profiling technologies T1 - Angewandte Metabolom Analyse : Erforschung, Entwicklung und Anwendung von auf Gaschromatographie-Massenspektrometrie basierenden N2 - The uptake of nutrients and their subsequent chemical conversion by reactions which provide energy and building blocks for growth and propagation is a fundamental property of life. This property is termed metabolism. In the course of evolution life has been dependent on chemical reactions which generate molecules that are common and indispensable to all life forms. These molecules are the so-called primary metabolites. In addition, life has evolved highly diverse biochemical reactions. These reactions allow organisms to produce unique molecules, the so-called secondary metabolites, which provide a competitive advantage for survival. The sum of all metabolites produced by the complex network of reactions within an organism has since 1998 been called the metabolome. The size of the metabolome can only be estimated and may range from less than 1,000 metabolites in unicellular organisms to approximately 200,000 in the whole plant kingdom. In current biology, three additional types of molecules are thought to be important to the understanding of the phenomena of life: (1) the proteins, in other words the proteome, including enzymes which perform the metabolic reactions, (2) the ribonucleic acids (RNAs) which constitute the so-called transcriptome, and (3) all genes of the genome which are encoded within the double strands of desoxyribonucleic acid (DNA). Investigations of each of these molecular levels of life require analytical technologies which should best enable the comprehensive analysis of all proteins, RNAs, et cetera. At the beginning of this thesis such analytical technologies were available for DNA, RNA and proteins, but not for metabolites. Therefore, this thesis was dedicated to the implementation of the gas chromatography – mass spectrometry technology, in short GC-MS, for the in-parallel analysis of as many metabolites as possible. Today GC-MS is one of the most widely applied technologies and indispensable for the efficient profiling of primary metabolites. The main achievements and research topics of this work can be divided into technological advances and novel insights into the metabolic mechanisms which allow plants to cope with environmental stresses. Firstly, the GC-MS profiling technology has been highly automated and standardized. The major technological achievements were (1) substantial contributions to the development of automated and, within the limits of GC-MS, comprehensive chemical analysis, (2) contributions to the implementation of time of flight mass spectrometry for GC-MS based metabolite profiling, (3) the creation of a software platform for reproducible GC-MS data processing, named TagFinder, and (4) the establishment of an internationally coordinated library of mass spectra which allows the identification of metabolites in diverse and complex biological samples. In addition, the Golm Metabolome Database (GMD) has been initiated to harbor this library and to cope with the increasing amount of generated profiling data. This database makes publicly available all chemical information essential for GC-MS profiling and has been extended to a global resource of GC-MS based metabolite profiles. Querying the concentration changes of hundreds of known and yet non-identified metabolites has recently been enabled by uploading standardized, TagFinder-processed data. Long-term technological aims have been pursued with the central aims (1) to enhance the precision of absolute and relative quantification and (2) to enable the combined analysis of metabolite concentrations and metabolic flux. In contrast to concentrations which provide information on metabolite amounts, flux analysis provides information on the speed of biochemical reactions or reaction sequences, for example on the rate of CO2 conversion into metabolites. This conversion is an essential function of plants which is the basis of life on earth. Secondly, GC-MS based metabolite profiling technology has been continuously applied to advance plant stress physiology. These efforts have yielded a detailed description of and new functional insights into metabolic changes in response to high and low temperatures as well as common and divergent responses to salt stress among higher plants, such as Arabidopsis thaliana, Lotus japonicus and rice (Oryza sativa). Time course analysis after temperature stress and investigations into salt dosage responses indicated that metabolism changed in a gradual manner rather than by stepwise transitions between fixed states. In agreement with these observations, metabolite profiles of the model plant Lotus japonicus, when exposed to increased soil salinity, were demonstrated to have a highly predictive power for both NaCl accumulation and plant biomass. Thus, it may be possible to use GC-MS based metabolite profiling as a breeding tool to support the selection of individual plants that cope best with salt stress or other environmental challenges. N2 - Die Aufnahme von Nährstoffen und ihre chemische Umwandlung mittels Reaktionen, die Energie und Baustoffe für Wachstum und Vermehrung bereitstellen, ist eine grundlegende Eigenschaft des Lebens. Diese Eigenschaft wird Stoffwechsel oder, wie im Folgenden, Metabolismus genannt. Im Verlauf der Evolution war alles Leben abhängig von solchen Reaktionen, die essentielle und allen Lebensformen gemeinsame Moleküle erzeugen. Über diese sogenannten Primärmetabolite hinaus sind hochdiverse Reaktionen entstanden. Diese erlauben Organismen, einzigartige sogenannte Sekundärmetabolite zu produzieren, die in der Regel einen zusätzlichen Überlebensvorteil vermitteln. Die Gesamtheit aller Metabolite, die von dem komplexen Reaktionsnetzwerk in Organismen erzeugt werden, nennt man seit 1998 das Metabolom. Die Größe des Metaboloms kann nur geschätzt werden. Neben der Gesamtheit aller Metabolite werden heute drei weitere Arten an Molekülen als wesentlich betrachtet, um die Phänomene des Lebens zu verstehen: erstens die Proteine, deren Summe, das Proteom, auch die Enzyme einschließt, die die obigen metabolischen Reaktionen durchführen, zweitens die Ribonukleinsäuren (RNS), deren Gesamtheit als Transkriptom bezeichnet wird, und drittens die doppelsträngige Desoxyribonukleinsäure (DNS), die das Genom, die Summe aller Gene eines Organismus, ausmacht. Die Untersuchung aller dieser vier molekularen Ebenen des Lebens erfordert Technologien, die idealerweise die vollständige Analyse der Gesamtheit aller DNS-, RNS-, Protein-Moleküle, bzw. Metabolite erlauben. Zu Beginn meiner Arbeiten waren solche Technologien für DNS, RNS, und Proteine verfügbar, aber nicht für Metabolite. Aus diesem Grund habe ich meine Forschungstätigkeit auf das Ziel ausgerichtet, so viele Metabolite wie irgend möglich in einer gemeinsamen Analyse zu erfassen. Zu diesem Zweck habe ich mich auf eine einzelne Technik, nämlich die gekoppelte Gaschromatographie und Massenspektrometrie, kurz GC-MS, konzentriert. Nicht zuletzt durch meine Arbeiten ist GC-MS heute eine der am häufigsten angewandten Technologien und unverzichtbar für das breite Durchmustern der Metabolite. Neben der Etablierung der grundlegenden GC-MS-Profilanalyse-Technologie liegen die Haupterrungenschaften meiner Arbeiten sowohl in den technischen Neuerungen als auch in den Einsichten in metabolische Mechanismen, die es Pflanzen erlauben, erfolgreich auf Umwelteinflüsse zu reagieren. Die technologischen Errungenschaften waren erstens wesentliche Beiträge zur Labor-Automatisierung und zur Auswertung von modernen, auf Flugzeitmassenspektrometrie beruhenden, GC-MS-Profilanalysen, zweitens die Entwicklung einer entsprechenden Prozessierungs-Software, genannt TagFinder, und drittens die Etablierung einer internationalen Datensammlung zur Metabolitidentifizierung aus komplexen Mischungen. Diese massenspektralen und gaschromatographischen Daten haben seit 2005 Eingang in die von mir initiierte Entwicklung der Golm Metabolom Datenbank (GMD) gefunden, die die zunehmend wachsenden GC-MS-Referenzdaten wie auch die Metabolitprofildaten verwaltet und öffentlich zugänglich macht. Darüber hinaus wurden die langfristigen Ziele einer verbesserten Präzision für relative und absolute Quantifizierung wie auch einer Kopplung von Konzentrationsbestimmung und metabolischen Flussanalysen mittels GC-MS verfolgt. Sowohl die Stoffmengen als auch die Geschwindigkeit der Stoffaufnahme und der chemischen Umsetzung, d.h. der metabolische Fluss, sind wesentlich für neue biologische Einsichten. In diesem Zusammenhang wurde von mir die Aufnahme von CO2 durch Pflanzen, der Basis allen Lebens auf der Erde, untersucht. Angewandt auf das Temperaturstress- und Salzstressverhalten von Modell- und Kulturpflanzen, nämlich des Ackerschmalwands (Arabidopsis thaliana), des Hornklees (Lotus japonicus) und der global bedeutendsten Nutzpflanze Reis (Oryza sativa), wurden detaillierte und vergleichende neue metabolische Einsichten in den Zeitverlauf der Temperaturanpassung und die Anpassung an zunehmend salzhaltige Böden erzielt. Metabolismus verändert sich unter diesen Bedingungen allmählich fortschreitend und nicht in plötzlichen Übergängen. Am Beispiel des Hornklees konnte gezeigt werden, dass Metabolitprofilanalysen eine hohe Vorhersagekraft für die Biomasseerzeugung unter Salzeinfluss wie auch für die Aufnahme von Salz durch die Pflanze haben. So mag es in Zukunft möglich werden, GC-MS-Profilanaysen anzuwenden, um den Züchtungsprozess von Kulturpflanzen zu beschleunigen. KW - Metabolomics KW - Metaboliten KW - Profilanalysen KW - Gaschromatographie KW - Massenspektrometrie KW - Metabolomics KW - Metabolites KW - Profiling KW - Gas Chromatography KW - Mass Spectrometry Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-40597 ER - TY - THES A1 - Pusch, Martin T1 - Horizontale und vertikale Konnektivität in Fließgewässern und Seen : ökologische Funktionen und anthropogene Überformung T1 - Horizontal and vertical connectivity in rivers and lakes : ecological functions and anthropogenic transformation N2 - Gewässer werden traditionellerweise als abgeschlossene Ökosysteme gesehen, und insbeson¬dere das Zirkulieren von Wasser und Nährstoffen im Pelagial von Seen wird als Beispiel dafür angeführt. Allerdings wurden in der jüngeren Vergangenheit wichtige Verknüpfungen des Freiwasserkörpers von Gewässern aufgezeigt, die einerseits mit dem Benthal und andererseits mit dem Litoral, der terrestrischen Uferzone und ihrem Einzugsgebiet bestehen. Dadurch hat in den vergangen Jahren die horizontale und vertikale Konnektivität der Gewässerökosysteme erhöhtes wissenschaftliches Interesse auf sich gezogen, und damit auch die ökologischen Funktionen des Gewässergrunds (Benthal) und der Uferzonen (Litoral). Aus der neu beschriebenen Konnektivität innerhalb und zwischen diesen Lebensräumen ergeben sich weitreichende Konsequenzen für unser Bild von der Funktionalität der Gewässer. In der vorliegenden Habilitationsschrift wird am Beispiel von Fließgewässern und Seen des nordostdeutschen Flachlandes eine Reihe von internen und externen funktionalen Verknüpfungen in den horizontalen und vertikalen räumlichen Dimensionen aufgezeigt. Die zugrunde liegenden Untersuchungen umfassten zumeist sowohl abiotische als auch biologische Variablen, und umfassten thematisch, methodisch und hinsichtlich der Untersuchungsgewässer ein breites Spektrum. Dabei wurden in Labor- und Feldexperimenten sowie durch quantitative Feldmes¬sungen ökologischer Schlüsselprozesse wie Nährstoffretention, Kohlenstoffumsatz, extrazellu¬läre Enzymaktivität und Ressourcenweitergabe in Nahrungsnetzen (mittels Stabilisotopen¬methode) untersucht. In Bezug auf Fließgewässer wurden dadurch wesentliche Erkenntnisse hinsichtlich der Wirkung einer durch Konnekticität geprägten Hydromorphologie auf die die aquatische Biodiversität und die benthisch-pelagische Kopplung erbracht, die wiederum einen Schlüsselprozess darstellt für die Retention von in der fließenden Welle transportierten Stoffen, und damit letztlich für die Produktivität eines Flussabschnitts. Das Litoral von Seen wurde in Mitteleuropa jahrzehntelang kaum untersucht, so dass die durchgeführten Untersuchungen zur Gemeinschaftsstruktur, Habitatpräferenzen und Nahrungs¬netzverknüpfungen des eulitoralen Makrozoobenthos grundlegend neue Erkenntnisse erbrach¬ten, die auch unmittelbar in Ansätze zur ökologischen Bewertung von Seeufern gemäß EG-Wasserrahmenrichtlinie eingehen. Es konnte somit gezeigt werden, dass die Intensität sowohl die internen als auch der externen ökologischen Konnektivität durch die Hydrologie und Morphologie der Gewässer sowie durch die Verfügbarkeit von Nährstoffen wesentlich beeinflusst wird, die auf diese Weise vielfach die ökologische Funktionalität der Gewässer prägen. Dabei trägt die vertikale oder horizontale Konnektivität zur Stabilisierung der beteiligten Ökosysteme bei, indem sie den Austausch ermöglicht von Pflanzennährstoffen, von Biomasse sowie von migrierenden Organismen, wodurch Phasen des Ressourcenmangels überbrückt werden. Diese Ergebnisse können im Rahmen der Bewirtschaftung von Gewässern dahingehend genutzt werden, dass die Gewährleistung horizontaler und vertikaler Konnektivität in der Regel mit räumlich komplexeren, diverseren, zeitlich und strukturell resilienteren sowie leistungsfähi¬geren Ökosystemen einhergeht, die somit intensiver und sicherer nachhaltig genutzt werden können. Die Nutzung einer kleinen Auswahl von Ökosystemleistungen der Flüsse und Seen durch den Menschen hat oftmals zu einer starken Reduktion der ökologischen Konnektivität, und in der Folge zu starken Verlusten bei anderen Ökosystemleistungen geführt. Die Ergebnisse der dargestellten Forschungen zeigen auch, dass die Entwicklung und Implementierung von Strategien zum integrierten Management von komplexen sozial-ökologischen Systemen wesentlich unterstützt werden kann, wenn die horizontale und vertikale Konnektivität gezielt entwickelt wird. N2 - Surface waters are seen traditionally as closed ecosystems, and the recirculation of water and nutrients in the pelagic zone of lakes is cited as an example fort his. However, recently important linkages have been demonstrated between the pelagic zone on one side, and the benthic and the littoral zones, the terrestrial shore area and the catchment on the other side. Therby, the horizontal and vertical connectivity of aquatic ecosystems has attracted intense scientific interest, and together with this the ecological functions of the bottom zone (benthic zone) and of the shore zone (littoral zone), too. From this newly described connectivity far-reaching consequences arise for our picture of the functionality of surface waters. In this habilitation thesis a number of internal and external functional linkages are depicted in the horizontal and vertical spatial dimensions, as exemplified by running waters and lakes of the north-east German lowlands. The underlying studies mostly comprised both abiotic and biotic variables, and a broad range of topics, methods and studied surface waters. Thereby, experiments in the lab and the field, as well as quantitative field measurements were used to investigate ecological key processes as nutrient retention, carbon dynamics, extracellular enzyme activity, and resource transfer in food webs (using stabile isotope technique). In respect to running waters this resulted in substantial insights into the effects of a hydromorphology exhibiting intense connectivity on aquatic biodiversity and benthic-pelagic coupling, which represents a key process for the retention of transported matter, and thus for the productivity of a river section. The littoral zone of lakes has hardly been studied in Central Europe for several decades. Thus, the results on community structure, habitat preference and food web linkages of eulittoral macrozoobenthos enabled fundamentally new insights, which can directly be used within approaches for the ecological assessment of lake shores according to the EU Water Framework Directive. Research results show that the development and implementation of strategies for an integrated management of complex social-ecological systems may be substantially underpinned by targeted development of horizontal and vertical connectivity. KW - Limnology KW - Aquatic Ecology KW - Connectivity KW - Lake KW - River KW - Limnologie KW - Gewässerökologie KW - Konnektivität KW - See KW - Fluss Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-63713 ER - TY - THES A1 - Wagner, Dirk T1 - Microbial perspectives of the methane cycle in permafrost ecosystems in the Eastern Siberian Arctic : implications for the global methane budget N2 - The Arctic plays a key role in Earth’s climate system as global warming is predicted to be most pronounced at high latitudes and because one third of the global carbon pool is stored in ecosystems of the northern latitudes. In order to improve our understanding of the present and future carbon dynamics in climate sensitive permafrost ecosystems, the present study concentrates on investigations of microbial controls of methane fluxes, on the activity and structure of the involved microbial communities, and on their response to changing environmental conditions. For this purpose an integrated research strategy was applied, which connects trace gas flux measurements to soil ecological characterisation of permafrost habitats and molecular ecological analyses of microbial populations. Furthermore, methanogenic archaea isolated from Siberian permafrost have been used as potential keystone organisms for studying and assessing life under extreme living conditions. Long-term studies on methane fluxes were carried out since 1998. These studies revealed considerable seasonal and spatial variations of methane emissions for the different landscape units ranging from 0 to 362 mg m-2 d-1. For the overall balance of methane emissions from the entire delta, the first land cover classification based on Landsat images was performed and applied for an upscaling of the methane flux data sets. The regionally weighted mean daily methane emissions of the Lena Delta (10 mg m-2 d-1) are only one fifth of the values calculated for other Arctic tundra environments. The calculated annual methane emission of the Lena Delta amounts to about 0.03 Tg. The low methane emission rates obtained in this study are the result of the used remotely sensed high-resolution data basis, which provides a more realistic estimation of the real methane emissions on a regional scale. Soil temperature and near soil surface atmospheric turbulence were identified as the driving parameters of methane emissions. A flux model based on these variables explained variations of the methane budget corresponding to continuous processes of microbial methane production and oxidation, and gas diffusion through soil and plants reasonably well. The results show that the Lena Delta contributes significantly to the global methane balance because of its extensive wetland areas. The microbiological investigations showed that permafrost soils are colonized by high numbers of microorganisms. The total biomass is comparable to temperate soil ecosystems. Activities of methanogens and methanotrophs differed significantly in their rates and distribution patterns along both the vertical profiles and the different investigated soils. The methane production rates varied between 0.3 and 38.9 nmol h-1 g-1, while the methane oxidation ranged from 0.2 to 7.0 nmol h-1 g-1. Phylogenetic analyses of methanogenic communities revealed a distinct diversity of methanogens affiliated to Methanomicrobiaceae, Methanosarcinaceae and Methanosaetaceae, which partly form four specific permafrost clusters. The results demonstrate the close relationship between methane fluxes and the fundamental microbiological processes in permafrost soils. The microorganisms do not only survive in their extreme habitat but also can be metabolic active under in situ conditions. It was shown that a slight increase of the temperature can lead to a substantial increase in methanogenic activity within perennially frozen deposits. In case of degradation, this would lead to an extensive expansion of the methane deposits with their subsequent impacts on total methane budget. Further studies on the stress response of methanogenic archaea, especially Methanosarcina SMA-21, isolated from Siberian permafrost, revealed an unexpected resistance of the microorganisms against unfavourable living conditions. A better adaptation to environmental stress was observed at 4 °C compared to 28 °C. For the first time it could be demonstrated that methanogenic archaea from terrestrial permafrost even survived simulated Martian conditions. The results show that permafrost methanogens are more resistant than methanogens from non-permafrost environments under Mars-like climate conditions. Microorganisms comparable to methanogens from terrestrial permafrost can be seen as one of the most likely candidates for life on Mars due to their physiological potential and metabolic specificity. N2 - Die Arktis spielt eine Schlüsselrolle im Klimasystem unserer Erde aus zweierlei Gründen. Zum einen wird vorausgesagt, dass die globale Erwärmung in den hohen Breiten am ausgeprägtesten sein wird. Zum anderen ist ein Drittel des globalen Kohlenstoffs in Ökosystemen der nördlichen Breiten gespeichert. Um ein besseres Verständnis der gegenwärtigen und zukünftigen Entwicklung der Kohlenstoffdynamik in klimaempfindlichen Permafrostökosystemen zu erlangen, konzentriert sich die vorliegende Arbeit auf Untersuchungen zur Kontrolle der Methanflüsse durch Mikroorganismen, auf die Aktivität und Struktur der beteiligten Mikroorganismen-gemeinschaften und auf ihre Reaktion auf sich ändernde Umweltbedingungen. Zu diesem Zweck wurde eine integrierte Forschungsstrategie entwickelt, die Spurengasmessungen mit boden- und molekularökologischen Untersuchungen der Mikroorganismengemeinschaften verknüpft. Langzeitmessungen zu den Methanflüssen werden seit 1998 durchgeführt. Diese Untersuchungen zeigten beträchtliche saisonale und räumliche Schwankungen der Methanemissionen auf, die zwischen 0 und 362 mg m-2 d-1 für die untersuchten Landschaftseinheiten schwankten. Für die Bilanzierung der Methanemissionen für das gesamte Delta wurde erstmals eine Klassifikation der unterschiedlichen Landschaftseinheiten anhand von Landsat-Aufnahmen durchgeführt und für eine Hochrechnung der Methandaten genutzt. Die Mittelwerte der regional gewichteten täglichen Methanemissionen des Lenadeltas (10 mg m-2 d-1) sind nur ein Fünftel so hoch wie die berechneten Werte für andere arktische Tundren. Die errechnete jährliche Methanemission des Lenadeltas beträgt demnach ungefähr 0,03 Tg. Die geringen Methanemissionsraten dieser Studie können durch den bisher noch nicht realisierten integrativen Ansatz, der Langzeitmessungen und Landschafts-klassifizierungen beinhaltet, erklärt werden. Bodentemperatur und oberflächennahe atmosphärische Turbulenzen wurden als die antreibenden Größen der Methanfreisetzung identifiziert. Ein Modell, das auf diesen Variablen basiert, erklärt die Veränderungen der Methanflüsse gemäß der dynamischen mikrobiellen Prozesse und der Diffusion von Methan durch den Boden und die Pflanzen zutreffend. Die Ergebnisse zeigen, dass das Lenadelta erheblich zur globalen Methanemission aufgrund seiner weitreichenden Feuchtgebiete beiträgt. Die mikrobiologischen Untersuchungen zeigten, dass Permafrostböden durch eine hohe Anzahl von Mikroorganismen besiedelt wird. Die Gesamtbiomasse ist dabei mit Bodenökosystemen gemäßigter Klimate vergleichbar. Die Stoffwechselaktivitäten von methanogenen Archaeen und methanotrophen Bakterien unterschieden sich erheblich in ihrer Rate und Verteilung im Tiefenprofil sowie zwischen den verschiedenen untersuchten Böden. Die Methanbildungsrate schwankte dabei zwischen 0,3 und 38,9 nmol h-1 g-1, während die Methanoxidation eine Rate von 0,2 bis 7,0 nmol h-1 g-1 aufwies. Phylogenetische Analysen der methanogenen Mikro-organismengemeinschaften zeigten eine ausgeprägte Diversität der methanogenen Archaeen auf. Die Umweltsequenzen bildeten vier spezifische Permafrostcluster aus, die den Gruppen Methanomicrobiaceae, Methanosarcinaceae und Methano-saetaceae zugeordnet werden konnten. Die Ergebnisse zeigen, dass die Methanfreisetzung durch die zugrunde liegenden mikrobiologischen Prozesse im Permafrostboden gesteuert wird. Die beteiligten Mikroorganismen überleben nicht nur in ihrem extremen Habitat, sondern zeigten auch Stoffwechselaktivität unter in-situ-Bedingungen. Ferner konnte gezeigt werden, dass eine geringfügige Zunahme der Temperatur zu einer erheblichen Zunahme der Methanbildungsaktivität in den ständig gefrorenen Permafrostablagerungen führen kann. Im Falle der Permafrostdegradation würde dieses zu einer gesteigerten Freisetzung von Methan führen mit bisher unbekannten Auswirkungen auf das Gesamtbudget der Methanfreistzung aus arktischen Gebieten. Weitere Untersuchungen zur Stresstoleranz von methanogenen Archaeen – insbesondere des neuen Permafrostisolates Methanosarcina SMA-21 - weisen eine unerwartete Widerstandsfähigkeit der Mikroorganismen gegenüber ungünstigen Lebensbedingungen auf. Eine bessere Anpassung an Umweltstress wurde bei 4°C im Vergleich zu 28°C beobachtet. Zum ersten Mal konnte gezeigt werden, dass methanogene Archaeen aus terrestrischem Permafrost unter simulierten Marsbedingungen unbeschadet überleben. Die Ergebnisse zeigen, dass methanogene Archaeen aus Permafrostböden resistenter gegenüber Umweltstress und Marsbedingungen sind als entsprechende Mikroorganismen aus Habitaten, die nicht durch Permafrost gekennzeichnet sind. Mikroorganismen, die den Archaeen aus terrestrischen Permafrosthabitaten ähneln, können als die wahrscheinlichsten Kandidaten für mögliches Leben auf dem Mars angesehen werden. KW - Methankreislauf KW - mikrobielle Prozesse KW - Diversität KW - Spurengasflüsse KW - Permafrostökosysteme KW - methane cycle KW - microbial processes KW - diversity KW - trace gas fluxes KW - permafrost ecosystems Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-15434 ER -