TY - THES A1 - Ivakov, Alexander T1 - Metabolic interactions in leaf development in Arabidopsis thaliana T1 - Metabolische Interaktionen während der Blattentwicklung in Arabidopsis thaliana N2 - Das Wachstum und Überleben von Pflanzen basiert auf der Photosynthese in den Blättern. Diese beinhaltet die Aufnahme von Kohlenstoffdioxid aus der Atmosphäre und das simultane Einfangen von Lichtenergie zur Bildung organischer Moleküle. Diese werden nach dem Eintritt in den Metabolismus in viele andere Komponenten umgewandelt, welche die Grundlage für die Zunahme der Biomasse bilden. Blätter sind Organe, die auf die Fixierung von Kohlenstoffdioxid spezialisiert sind. Die Funktionen der Blätter beinhalten vor allem die Optimierung und Feinregulierung vieler Prozesse, um eine effektive Nutzung von Ressourcen und eine maximale Photosynthese zu gewährleisten. Es ist bekannt, dass sich die Morphologie der Blätter den Wachstumsbedingungen der Pflanze anpasst und eine wichtige Rolle bei der Optimierung der Photosynthese spielt. Trotzdem ist die Regulation dieser Art der Anpassung bisher nicht verstanden. Die allgemeine Zielsetzung dieser vorliegenden Arbeit ist das Verständnis wie das Wachstum und die Morphologie der Blätter im Modellorganismus Arabidopsis thaliana reguliert werden. Besondere Aufmerksamkeit wurde hierbei der Möglichkeit geschenkt, dass es interne metabolische Signale in der Pflanze geben könnte, die das Wachstum und die Entwicklung von Blättern beeinflussen. Um diese Fragestellung zu untersuchen, muss das Wachstum und die Entwicklung von Blättern oberhalb des Levels des einzelnen Organs und im Kontext der gesamten Pflanze betrachtet werden, weil Blätter nicht eigenständig wachsen, sondern von Ressourcen und regulatorischen Einflüssen der ganzen Pflanze abhängig sind. Aufgrund der Komplexität dieser Fragestellung wurden drei komplementäre Ansätze durchgeführt. Im ersten und spezifischsten Ansatz wurde untersucht ob eine flussabwärts liegende Komponente des Zucker-Signalwegs, Trehalose-6-Phosphat (Tre-6-P), das Blattwachstum und die Blattentwicklung beinflussen kann. Um diese Frage zu beantworten wurden transgene Arabidopsis-Linien mit einem gestörten Gehalt von Tre-6-P durch die Expression von bakteriellen Proteinen die in dem metabolismus von trehalose beteiligt sind. Die Pflanzen-Linien wurden unter Standard-Bendingungen in Erde angebaut und ihr Metabolismus und ihre Blattmorphologie untersucht. Diese Experimente führten auch zu einem unerwarteten Projekt hinsichtlich einer möglichen Rolle von Tre-6-P in der Regulation der Stomata. In einem zweiten, allgemeineren Ansatz wurde untersucht, ob Änderungen im Zucker-Gehalt der Pflanzen die Morphogenese der Blätter als Antwort auf Licht beeinflussen. Dazu wurden eine Reihe von Mutanten, die im Zentralmetabolismus beeinträchtigt sind, in derselben Lichtbedingung angezogen und bezüglich ihrer Blattmorphologie analysiert. In einem dritten noch allgemeineren Ansatz wurde die natürliche Variation von morphologischen Ausprägungen der Blätter und Rosette anhand von wilden Arabidopsis Ökotypen untersucht, um zu verstehen wie sich die Blattmorphologie auf die Blattfunktion und das gesamte Pflanzenwachstum auswirkt und wie unterschiedliche Eigenschaften miteinander verknüpft sind. Das Verhältnis der Blattanzahl zum Gesamtwachstum der Pflanze und Blattgröße wurde gesondert weiter untersucht durch eine Normalisierung der Blattanzahl auf das Frischgewicht der Rosette, um den Parameter „leafing Intensity“ abzuschätzen. Leafing Intensity integrierte Blattanzahl, Blattgröße und gesamtes Rosettenwachstum in einer Reihe von Kompromiss-Interaktionen, die in einem Wachstumsvorteil resultieren, wenn Pflanzen weniger, aber größere Blätter pro Einheit Biomasse ausbilden. Dies führte zu einem theoretischen Ansatz in dem ein einfaches allometrisch mathematisches Modell konstruiert wurde, um Blattanzahl, Blattgröße und Pflanzenwachstum im Kontext der gesamten Pflanze Arabidopsis zu verknüpfen. N2 - Plant growth and survival depend on photosynthesis in the leaves. This involves the uptake of carbon dioxide from the atmosphere and the simultaneous capture of light energy to produce organic molecules, which enter metabolism and are converted to many other compounds which then serve as building blocks for biomass growth. Leaves are organs specialised for photosynthetic carbon dioxide fixation. The function of leaves involves many trade-offs which must be optimised in order to achieve effective use of resources and maximum photosynthesis. It is known that the morphology of leaves adjusts to the growth environment of plants and this is important for optimising their function for photosynthesis. However, it is unclear how this adjustment is regulated. The general aim of the work presented in this thesis is to understand how leaf growth and morphology are regulated in the model species Arabidopsis thaliana. Special attention was dedicated to the possibility that there might be internal metabolic signals within the plant which affect the growth and development of leaves. In order to investigate this question, leaf growth and development must be considered beyond the level of the single organ and in the context of the whole plant because leaves do not grow autonomously but depend on resources and regulatory influences delivered by the rest of the plant. Due to the complexity of this question, three complementary approaches were taken. In the first and most specific approach it was asked whether a proposed down-stream component of sucrose signalling, trehalose-6-phosphate (Tre-6-P), might influence leaf development and growth. To investigate this question, transgenic Arabidopsis lines with perturbed levels of Tre-6-P were generated using the constitutive 35S promoter to express bacterial enzymes involved in trehalose metabolism. These experiments also led to an unanticipated project concerning a possible role for Tre-6-P in stomatal function, which is another very important function in leaves. In a second and more general approach it was investigated whether changes in sugar levels in plants affect the morphogenesis of leaves in response to light. For this, a series of metabolic mutants impaired in central metabolism were grown in one light environment and their leaf morphology was analysed. In a third and even more general approach the natural variation in leaf and rosette morphological traits was investigated in a panel of wild Arabidopsis accessions with the aim of understanding how leaf morphology affects leaf function and whole plant growth and how different traits relate to each other. The analysis included measurements of leaf morphological traits as well as the number of leaves in the plant to put leaf morphology in a whole plant context. The variance in plant growth could not be explained by variation in photosynthetic rates and only to a small degree by variation in rates of dark respiration. There were four key axes of variation in rosette and leaf morphology – leaf area growth, leaf thickness, cell expansion and leaf number. These four processes were integrated in the context of whole plant growth by models that employed a multiple linear regression approach. This then led to a theoretical approach in which a simple allometric mathematical model was constructed, linking leaf number, leaf size and plant growth rate together in a whole plant context in Arabidopsis. KW - Blattmorphologie KW - Entwicklung KW - Arabidopsis KW - Metabolismus KW - Ökotypen KW - leaf KW - morphology KW - Arabidopsis KW - metabolism KW - accessions Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-59730 ER - TY - THES A1 - Guedes Corrêa, Luiz Gustavo T1 - Evolutionary and functional analysis of transcription factors controlling leaf development T1 - Evolutionäre und funktionelle Analyse von Transkriptionsfaktoren, welche die Blattentwicklung steuern N2 - Leaves are the main photosynthetic organs of vascular plants, and leaf development is dependent on a proper control of gene expression. Transcription factors (TFs) are global regulators of gene expression that play essential roles in almost all biological processes among eukaryotes. This PhD project focused on the characterization of the sink-to-source transition of Arabidopsis leaves and on the analysis of TFs that play a role in early leaf development. The sink-to-source transition occurs when the young emerging leaves (net carbon importers) acquire a positive photosynthetic balance and start exporting photoassimilates. We have established molecular and physiological markers (i.e., CAB1 and CAB2 expression levels, AtSUC2 and AtCHoR expression patterns, chlorophyll and starch levels, and photosynthetic electron transport rates) to identify the starting point of the transition, especially because the sink-to-source is not accompanied by a visual phenotype in contrast to other developmental transitions, such as the mature-to-senescent transition of leaves. The sink-to-source transition can be divided into two different processes: one light dependent, related to photosynthesis and light responses; and one light independent or impaired, related to the changes in the vascular tissue that occur when leaves change from an import to an export mode. Furthermore, starch, but not sucrose, has been identified as one of the potential signalling molecules for this transition. The expression level of 1880 TFs during early leaf development was assessed by qRTPCR, and 153 TFs were found to exhibit differential expression levels of at least 5-fold. GRF, MYB and SRS are TF families, which are overrepresented among the differentially expressed TFs. Additionally, processes like cell identity acquisition, formation of the epidermis and leaf development are overrepresented among the differentially expressed TFs, which helps to validate the results obtained. Two of these TFs were further characterized. bZIP21 is a gene up-regulated during the sink-to-source and mature-to-senescent transitions. Its expression pattern in leaves overlaps with the one observed for AtCHoR, therefore it constitutes a good marker for the sink-to-source transition. Homozygous null mutants of bZIP21 could not be obtained, indicating that the total absence of bZIP21 function may be lethal to the plant. Phylogenetic analyses indicate that bZIP21 is an orthologue of Liguleless2 from maize. In these analyses, we identified that the whole set of bZIPs in plants originated from four founder genes, and that all bZIPs from angiosperms can be classified into 13 groups of homologues and 34 Possible Groups of Orthologues (PoGOs). bHLH64 is a gene highly expressed in early sink leaves, its expression is downregulated during the mature-to-senescent transition. Null mutants of bHLH64 are characterized by delayed bolting when compared to the wild-type; this indicates a possible delay in the sink-to-source transition or the retention of a juvenile identity. A third TF, Dof4, was also characterized. Dof4 is neither differentially expressed during the sink-to-source nor during the senescent-to-mature transition, but a null mutant of Dof4 develops bigger leaves than the wild-type and forms a greater number of siliques. The Dof4 null mutant has proven to be a good background for biomass accumulation analysis. Though not overrepresented during the sink-to-source transition, NAC transcription factors seem to contribute significantly to the mature-to-senescent transition. Twenty two NACs from Arabidopsis and 44 from rice are differentially expressed during late stages of leaf development. Phylogenetic analyses revealed that most of these NACs cluster into three big groups of homologues, indicating functional conservation between eudicots and monocots. To prove functional conservation of orthologues, the expression of ten NAC genes of barley was analysed. Eight of the ten NAC genes were found to be differentially expressed during senescence. The use of evolutionary approaches combined with functional studies is thus expected to support the transfer of current knowledge of gene control gained in model species to crops. N2 - Das Blatt ist das wichtigste photosynthetische Organ von Gefäßpflanzen und die Blattentwicklung ist von einer exakten Genexpression abhängig. Transkriptionsfaktoren (TFs) sind globale Regulatoren der Genexpression. Diese sind, in fast allen biologischen Vorgängen der Eukaryoten, von grundlegender Bedeutung. Das Promotionsarbeit legte den Schwerpunkt auf den sogenannten Sink-source-Übergang in Blättern der Modellpflanze Arabidopsis thaliana, zu deutsch Ackerschmalwand. Ein besonderer Fokus lag dabei auf der Analyse von TFs, welche eine wichtige Rolle in der frühen Blattentwicklung spielen. Sehr junge Blätter befinden sich im sogenannten Sink-Status, sie müssen Photoassimilate aus älteren, sogenannten Source-Blättern importieren, da sie selbst noch nicht in der Lage sind, hinreichend viel Kohlendioxid über die Photosynthese zu binden. Der Übergang vom Sink- in den Source-Zustand eines Blattes ist ein hoch komplizierter biologischer Prozess, der bisher nur in Ansätzen verstanden ist. Im Rahmen der Doktorarbeit wurden molekulare und physiologische Marker identifiziert, die es erlauben, den für das bloße Auge nicht ohne weiteres sichtbaren Sink-Source-Übergang zu erkennen. Dazu wurde beispielsweise die Aktivität bestimmter Gene, unter anderem der Gene AtSUC2 und AtCHoR, mittels molekularer Techniken verfolgt. Um den Über zwischen den beiden Entwicklungszuständen eingehend zu charakterisieren wurde die Aktivität von etwa 1900 Regulatorgenen mittels eines multiparallelen Verfahrens - der sogenannten quantitativen RT-PCR - untersucht. Bei den Regulatoren handelt es sich um Transkriptionsfaktoren, die die Aktivität anderer Gene der Pflanzen steuern. Von allen untersuchten Genen zeigten 153 ein vom Blattstadium abhängiges Aktivitätsmuster. Dabei waren Mitglieder der GRF, MYB und SRS Familien überrepräsentiert. Für die gefundenen Transkriptionsfaktoren zeigte sich besonders häufig eine Assoziation zu Prozessen wie Spezialisierung von Zellen, Entwicklung der Epidermis sowie der Blattentwicklung. Zwei ausgewählte Regulatorproteine - bZIP21 und bHLH64 - wurden detaillierter charakterisiert. Das bZIP21-Gen zeigte eine starke Aktivität whrend des Sink-Source-Übergangs. Sein Expressionsmuster in Blättern deckt sich mit dem für AtCHoR beobachteten Expressionsmuster, so dass bZIP21 als ein neuer Marker für die Sink-Source- Transition dienen kann. Es konnten keine homozygoten Null-Mutanten des Gens erhalten werden, was die Vermutung nahelegt, dass gänzliche Abwesenheit von bZIP21 letal fr die Pflanze sein kann. Phylogenetische Analysen ergaben, dass bZIP21 ortholog zum Gen Liguleless2 aus Mais ist. In diesen Analysen konnte gezeigt werden, dass alle pflanzlichen bZIP Transkriptionsfaktoren von vier Gründergenen abstammen und alle bZIPs der Angiospermen in 13 homologe Klassen und 34 mögliche orthologe Klassen (Possible Groups of Orthologues, PoGOs) eingeordnet werden können. Das bHLH64 Gen ist im unreifen Blatt stark aktiv und während des Alterungsprozesses herunterreguliert. Null-Mutationen von bHLH64 zeigen eine verzögerte Blütenbildung im Vergleich zum Wildtyp; dies weist auf eine mögliche Verzögerung in des Sink-SourceÜbergangs oder Aufrechterhaltung der jugendlichen Identität hin. Ein dritter Transkriptionsfaktor, Dof4, wurde ebenfalls charakterisiert. Dof4 wird weder während des Sink-Source-Übergangs noch während des Alterungsprozesses unterschiedlich exprimiert. Eine Null-Mutante von Dof4 besaß größere Blätter und eine höhere Anzahl an Schoten in Vergleich zum Wildtyp. Diese Mutanten erwiesen sich als gut geeignet fr die Analyse der Akkumulation pflanzlicher Biomasse. Obwohl während der Sink-Source Transition nicht überrepräsentiert, scheinen NAC Transkriptionsfaktoren eine große Rolle während des Alterungsprozesses zu spielen. Zweiundzwanzig NAC-Gene von Arabidopsis und 44 von Reis sind in der späten Phase der Blattentwicklung verändert exprimiert. Phylogenetische Analysen erlaubten die Einordnung der meisten dieser NACs in vier homologe Gruppen, was auf einen funktionellen Erhalt zwischen einkeimblättrigen und zweikeimblättrigen Pflanzen hinweist. Um den funktionellen Erhalt von Orthologen zu untersuchen, wurde die Expression von zehn NAC-Genen aus Gerste analysiert. Acht dieser Gene zeigten eine von der Blattalterung abhängige Expression. Die Kombination von evolutionären Analysen und funktionellen Studien könnte den Wissenstransfer von Modellpflanzen auf Getreidepflanzen in Zukunft vereinfachen. KW - Evolution KW - Transkriptionsfaktoren KW - Pflanzen KW - Entwicklung KW - Blatt KW - evolution KW - transcription factors KW - plant KW - development KW - leaf Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-40038 ER - TY - THES A1 - Castro Marin, Inmaculada T1 - Nitrate: metabolism and development T1 - Charakterisierung der Glutamatdehydrogenase-Familie, einem Schlüsselenzym der Kohlenstoff-Stickstoffinteraktion von Metaboliten und Studie der Regulierung der Blütezeit durch Stickstoff BT - characterization of the glutamate dehydrogenase (GDH) family, an enzyme at the cross-roads of carbon-nitrogen interaction metabolites and study of the regulation of flowering by nitrogen N2 - The major aim of this thesis was to study the effect of nitrate on primary metabolism and in development of the model plant Arabidopsis thaliana. The present work has two separate topics. First, to investigate the GDH family, a small gene family at the interface between nitrogen and carbon metabolisms. Second, to investigate the mechanisms whereby nitrogen is regulating the transition to flowering time in Arabidopsis thaliana. To gain more insights into the regulation of primary metabolism by the functional characterization of the glutamate dehydrogenase (GDH) family, an enzyme putatively involved in the metabolism of amino acids and thus suggested to play different and essential roles in carbon and nitrogen metabolism in plants, knock out mutants and transgenic plants carrying RNA interference construct were generated and characterized. The effect of silencing GDH on carbon and nitrogen metabolisms was investigated, especially the level of carbohydrates and the amino acid pool were further analysed. It has been shown that GDH expression is regulated by light and/or sugar status therefore, phenotypic and metabolic analysis were developed in plants grown at different points of the diurnal rhythm and in response to an extended night period. In addition, we are interested in the effect of nutrient availability in the transition from vegetative growth to flowering and especially in nitrate as a metabolite that triggers widespread and coordinated changes in metabolism and development. Nutrient availability has a dramatic effect on flowering time, with a marked delay of flowering when nitrate is supplied (Stitt, 1999). The use of different mutants and transgenic plants impaired in flowering signalling pathways was crucial to evaluate the impact of different nitrate concentrations on flowering time and to better understand the interaction of nitrate-dependent signals with other main flowering signalling pathways. Plants were grown on glutamine as a constitutive source of nitrogen, and the nitrate supply varied. Low nitrate led to earlier flowering. The response to nitrate is accentuated in short days and in the CONSTANS deficient co2 mutant, whereas long days or overexpression of CONSTANS overrides the nitrate response. These results indicate that nitrates acts downstream of the known flowering signalling pathways for photoperiod, autonomy, vernalization and gibberellic acid. Global analyses of gene expression of two independent flowering systems, a light impaired mutant (co2tt4) and a constitutive over-expresser of the potent repressor of flowering (35S::FLC), were to be investigated under two different concentrations of nitrate in order to identify candidate genes that may be involved in the regulation of flowering time by nitrate. N2 - Das Hauptziel dieser Doktorarbeit war die Untersuchung des Effekts von Stickstoff auf den Primärmetabolisms und auf die Entwicklung der Modellpflanze Arabidopsis thaliana. Die vorliegende Arbeit hat zwei Unterthemen: Auf der einen Seite wurde die GDH Familie untersucht, eine kleine Genfamilie an der Schnittstelle zwischen Stick –und Kohlenstoffmetabolismus. Auf der anderen Seite wurde der Mechanismus, bei dem Stickstoff die Blütezeit in Arabidopsis thaliana kontrolliert, untersucht. Um einen tieferen Einblick in die Regulierung des Primärmetabolismus zu erhalten, wurde eine funktionelle Charakterisierung der Glutamatdehydrogenase-Familie (GDH) mit Hilfe von knock-out Mutanten und transgenen Pflanzen, die ein RNA Interferenzkonstrukt tragen, durchgeführt. GDH ist höchstwahrscheinlich am Aminosäuremetabolismus beteiligt, wobei vermutet wird, dass es verschiedene wichtige Aufgaben im Pflanzenkohlen –und stickstoffmetabolismus übernimmt. Dabei wurde der Effekt des GDH Silencing auf den Kohlen- sowie Stickstoffmetabolismus untersucht und insbesondere die Anteile von Kohlenhydraten und Aminosäuren eingehend analysiert. In vorhergehenden Studien zeigte sich, dass die GDH-Expression durch Licht und/oder die Zuckerverfügbarkeit reguliert wird. Deshalb wurden phenotypische und metabolische Analysen an Pflanzen entwickelt, die zu verschiedenen Zeitpunkten des diurnalen Rhythmus und nach einer längeren Nachtperiode gezüchtet wurden. Ausserdem interesssiert uns der Effekt der Nährstoffverfügbarkeit im Übergang vom vegetativen Wachstum zur Blüte, und vor allen Dingen Nitrat als Metabolit, welches weitreichende und koordinierte Veränderungen im Metabolismus und in der Entwicklung hervorruft. Die Nährstoffverfügbarkeit hat einen dramatischen Effekt auf die Blütezeit, insbesondere führt eine Nitratzugabe zu einer deutlichen Verzögerung der Blüte (Stitt, 1999). Der Einsatz von verschiedenen Mutanten und transgenen Pflanzen, die eine Blockade im Blüte-Signalweg aufwiesen, war ausschlaggebend, um den Einfluss von unterschiedlichen Nitratkonzentrationen auf die Blütezeit zu beurteilen, und um zu einem besserem Verständnis des Zusammenspiels von nitratabhängigen Signalen und anderen Blüte-Signalwegen zu gelangen. Die Pflanzen wuchsen auf Glutamin, das als konstitutive Stickstoffquelle diente, wobei die Nitratversorgung variierte. Niedriger Nitratanteil führte zu einer früheren Blüte. Bei kurzer Tageslänge und bei CONSTANS defizienten Mutanten (co2) ist die Reaktion auf Nitratzugabe erhöht, wohingegen bei fortgeschrittener Tageslänge oder bei Überexpression von CONSTANS die Reaktion auf Nitrat unterbleibt. Diese Ergebnisse verdeutlichen, dass Nitrat unterhalb der bekannten Blüte-Signalwege für Photoperiode, Autonomie, Vernalisierung und Gibberelinsäure fungiert. Globale Expressionsanalysen von zwei unterschiedlichen Blütensystemen, eine licht-unempfindliche Mutante (co2tt4) und eine Mutante mit konstitutiver Expression eines potentiellen Blüte-Repressors (35S::FLC), wurden bei zwei verschiedenen Nitratkonzentrationen durchgeführt, um Kandidatengene zu identifizieren, die eine wichtige Rolle in der Regulation der Blütezeit durch Nitrat spielen könnten. KW - Nitrat KW - Stoffwechsel KW - Entwicklung KW - Arabidopsis thaliana KW - Nitrate KW - Metabolism KW - Development KW - Arabidopsis thaliana Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-18827 ER -