TY - GEN A1 - He, Hai A1 - Höper, Rune A1 - Dodenhöft, Moritz A1 - Marlière, Philippe A1 - Bar-Even, Arren T1 - An optimized methanol assimilation pathway relying on promiscuous formaldehyde-condensing aldolases in E. coli T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Engineering biotechnological microorganisms to use methanol as a feedstock for bioproduction is a major goal for the synthetic metabolism community. Here, we aim to redesign the natural serine cycle for implementation in E. coli. We propose the homoserine cycle, relying on two promiscuous formaldehyde aldolase reactions, as a superior pathway design. The homoserine cycle is expected to outperform the serine cycle and its variants with respect to biomass yield, thermodynamic favorability, and integration with host endogenous metabolism. Even as compared to the RuMP cycle, the most efficient naturally occurring methanol assimilation route, the homoserine cycle is expected to support higher yields of a wide array of products. We test the in vivo feasibility of the homoserine cycle by constructing several E. coli gene deletion strains whose growth is coupled to the activity of different pathway segments. Using this approach, we demonstrate that all required promiscuous enzymes are active enough to enable growth of the auxotrophic strains. Our findings thus identify a novel metabolic solution that opens the way to an optimized methylotrophic platform. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 997 KW - Pathway design KW - Promiscuous enzymes KW - Formaldehyde assimilation KW - Serine cycle KW - Growth selection Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-476452 SN - 1866-8372 IS - 997 SP - 1 EP - 13 ER -