TY - THES A1 - Wunderling, Nico T1 - Nichtlineare Dynamiken und Interaktionen von Kippelementen im Erdsystem T1 - Nonlinear dynamics and interactions of tipping elements in the Earth system N2 - With ongoing anthropogenic global warming, some of the most vulnerable components of the Earth system might become unstable and undergo a critical transition. These subsystems are the so-called tipping elements. They are believed to exhibit threshold behaviour and would, if triggered, result in severe consequences for the biosphere and human societies. Furthermore, it has been shown that climate tipping elements are not isolated entities, but interact across the entire Earth system. Therefore, this thesis aims at mapping out the potential for tipping events and feedbacks in the Earth system mainly by the use of complex dynamical systems and network science approaches, but partially also by more detailed process-based models of the Earth system. In the first part of this thesis, the theoretical foundations are laid by the investigation of networks of interacting tipping elements. For this purpose, the conditions for the emergence of global cascades are analysed against the structure of paradigmatic network types such as Erdös-Rényi, Barabási-Albert, Watts-Strogatz and explicitly spatially embedded networks. Furthermore, micro-scale structures are detected that are decisive for the transition of local to global cascades. These so-called motifs link the micro- to the macro-scale in the network of tipping elements. Alongside a model description paper, all these results are entered into the Python software package PyCascades, which is publicly available on github. In the second part of this dissertation, the tipping element framework is first applied to components of the Earth system such as the cryosphere and to parts of the biosphere. Afterwards it is applied to a set of interacting climate tipping elements on a global scale. Using the Earth system Model of Intermediate Complexity (EMIC) CLIMBER-2, the temperature feedbacks are quantified, which would arise if some of the large cryosphere elements disintegrate over a long span of time. The cryosphere components that are investigated are the Arctic summer sea ice, the mountain glaciers, the Greenland and the West Antarctic Ice Sheets. The committed temperature increase, in case the ice masses disintegrate, is on the order of an additional half a degree on a global average (0.39-0.46 °C), while local to regional additional temperature increases can exceed 5 °C. This means that, once tipping has begun, additional reinforcing feedbacks are able to increase global warming and with that the risk of further tipping events. This is also the case in the Amazon rainforest, whose parts are dependent on each other via the so-called moisture-recycling feedback. In this thesis, the importance of drought-induced tipping events in the Amazon rainforest is investigated in detail. Despite the Amazon rainforest is assumed to be adapted to past environmental conditions, it is found that tipping events sharply increase if the drought conditions become too intense in a too short amount of time, outpacing the adaptive capacity of the Amazon rainforest. In these cases, the frequency of tipping cascades also increases to 50% (or above) of all tipping events. In the model that was developed in this study, the southeastern region of the Amazon basin is hit hardest by the simulated drought patterns. This is also the region that already nowadays suffers a lot from extensive human-induced changes due to large-scale deforestation, cattle ranching or infrastructure projects. Moreover, on the larger Earth system wide scale, a network of conceptualised climate tipping elements is constructed in this dissertation making use of a large literature review, expert knowledge and topological properties of the tipping elements. In global warming scenarios, tipping cascades are detected even under modest scenarios of climate change, limiting global warming to 2 °C above pre-industrial levels. In addition, the structural roles of the climate tipping elements in the network are revealed. While the large ice sheets on Greenland and Antarctica are the initiators of tipping cascades, the Atlantic Meridional Overturning Circulation (AMOC) acts as the transmitter of cascades. Furthermore, in our conceptual climate tipping element model, it is found that the ice sheets are of particular importance for the stability of the entire system of investigated climate tipping elements. In the last part of this thesis, the results from the temperature feedback study with the EMIC CLIMBER-2 are combined with the conceptual model of climate tipping elements. There, it is observed that the likelihood of further tipping events slightly increases due to the temperature feedbacks even if no further CO$_2$ would be added to the atmosphere. Although the developed network model is of conceptual nature, it is possible with this work for the first time to quantify the risk of tipping events between interacting components of the Earth system under global warming scenarios, by allowing for dynamic temperature feedbacks at the same time. N2 - Bei fortdauerndem anthropogenem Klimawandel, könnten einige der vulnerabelsten Komponenten des Erdsystem instabil werden und in einen anderen Zustand übergehen. Diese Komponenten des Erdsystems sind die sogenannten Kippelemente. Bei ihnen wird angenommen, dass sie einen Kipppunkt besitzen ab dem sie in einen qualitativ anderen Zustand übergehen können. Sollte das passieren, hätte das schwerwiegende Konsequenzen für die Biosphäre und menschliche Gesellschaften. Des Weiteren ist gezeigt worden, dass Kippelemente keine isolierte Reigionen oder Prozesse sind, sondern über das gesamte Erdsystem hinweg interagieren. Das Ziel dieser Arbeit ist es daher, die Wahrscheinlichkeit für Kippereignisse sowie deren Feedbacks im Erdsystem zu quantifizieren. Zu diesem Zweck kommen vor allem Frameworks aus der Wissenschaft komplexer Systeme und Netzwerke zum Einsatz. Für einige Teilaspekte dieser Arbeit wird aber auch ein detaillierteres und prozessbasierteres Erdsystemmodell verwendet. Im ersten Teil dieser Arbeit werden die theoretischen Grundlagen gelegt, indem komplexe Netzwerke bestehend aus interagierenden Kippelementen untersucht werden. Hier werden Voraussetzungen für das Auftreten globaler Kippkaskaden anhand der Struktur paradigmatischer Netzwerktypen analysiert. Diese Typen sind Netzwerke wie Erdös-Rényi, Barabási-Albert, Watts-Strogatz Netzwerke oder auch explizit räumlich eingebettete Netzwerke. Darüber hinaus sind bestimmte Mikrostrukturen in Netzwerken dafür entscheidend, ob sich eine lokale Kaskaden auf das globale Netzwerk ausbreiten kann. Diese Strukturen sind das Bindeglied zwischen der Mikro- und der Makroebene des Netzwerks und werden Motive genannt. Zusammen mit einer Publikation zur Modellbeschreibung, werden alle diese Ergebnisse im Python-Softwarepaket PyCascades veröffentlicht, das auf github öffentlich verfügbar ist. Im zweiten Teil dieser Dissertation wird das Kippelementframework zunächst auf Kompenenten des Erdsystems angewendet wie der Kryosphäre und Teilen der Biosphäre, und danach auf globaler Skala für interagierende Klimakippelemente. In einem ersten Schritt werden mit dem Erdsystemmodell mittlerer Komplexität CLIMBER-2 die Temperaturfeedbacks ermittelt, die entstehen würden, wenn große Gebiete der Kryosphäre auf lange Sicht eisfrei werden. In dieser Berechnung werden das arktische Sommermeereis, die Gebirgsgletscher, der grönländische und der westantarktische Eisschild berücksichtigt. Die quantifizierte Temperaturerhöhung liegt in der Größenordnung von einem halben Grad zusätzlicher globaler Erwärmung (0.39--0.46°C). Lokale bis regionale Temperaturerhöhungen können allerdings 5°C übersteigen. Wenn also das Kippen einiger Elemente begonnen hat, bedeutet dieses Ergebnis, dass Temperaturfeedbacks in der Lage sind, das Risiko weiterer Kippereignisse zu erhöhen. Dies ist auch der Fall im Amazonasregenwald, dessen Unterregionen über den sogenannten Feuchtig-keits-Recycling-Feedback miteinander in Beziehung stehen und voneinander abhängen. In dieser Dissertation wird die Bedeutung von Kippereignissen im Detail untersucht, die aufgrund von Dürreperioden zustande kommen. Obwohl man davon ausgehen kann, dass der Regenwald sich an zurückliegende und gegenwärtige Klimabedingungen angepasst hat, kann festgestellt werden, dass die Häu-figkeit von Kippereignissen stark zunimmt, wenn die jeweilige Trockenperiode eine gewisse Intensität übersteigt und damit die Anpassungsfähigkeit des Amazonasregenwalds überschritten wird. In solchen Fällen steigt auch die Häufigkeit von Kippkaskaden unter allen Kippereignissen auf 50% (und mehr) an. In dem Modell, das in dieser Studie entwickelt wurde, zeigt sich, dass der Südosten des Amazonasbeckens am stärksten von den simulierten Trockenheitsmustern betroffen ist. Das ist gleichzeitig die Region, die bereits heute stark unter anthropogener Veränderung leidet, unter anderem aufgrund von großflächiger Abholzung, Viehzucht oder Infrastrukturprojekten. Zudem wird in dieser Dissertation auf der größeren, erdsystemweiten Skala ein Netzwerk konzeptionalisierter Klimakippelemente aufgebaut. Zu diesem Zweck wird eine umfangreiche Literaturrecherche durchgeführt, die zusammen mit Expertenwissen und den topologischen Eigenschaften der Kippelemente in die Studien mit einfließt. In Klimawandelszenarien können dann Kippkaskaden beobachtet werden, selbst wenn die globale Erderwärmung auf 2°C über dem vorindustriellen Niveau begrenzt werden kann. Außerdem werden die strukturellen Rollen der Klimakippelemente im Netzwerk ermittelt. Während die großen Eisschilde auf Grönland und der Westantarktis viele Kippkaskaden initiieren, ist die Atlantische Umwälzzirkulation für die Weitergabe vieler dieser Kaskaden verantwortlich. In unserem konzeptionellen Modell für Klimakippelemente wird darüber hinaus festgestellt, dass die Eisschilde von besonderer Bedeutung für die Stabilität des Gesamtsystems sind. Im letzen Teil dieser Dissertation werden die Ergebnisse der Feedbackstudie (CLIMBER-2-Studie) zusammengebracht mit dem konzeptionellen Klimakippelementmodell. Dabei zeigt sich, dass die Wahrscheinlichkeit zusätzlicher Kippereignisse aufgrund der berücksichtigten Temperaturfeedbacks auch ohne das Zuführen eines zusätzlichen CO2-Eintrags in die Atmosphäre leicht ansteigt. Trotz der konzeptionellen Natur des entwickelten Netzwerkmodells, ist es mit dieser Arbeit erstmals möglich eine Risikoabschätzung über das Auftreten von Kippkaskaden im Erdsystem vorzunehmen. Darüber hinaus können, unter der Annahme globaler Erwärmungsszenarien, auch dynamische Temperaturfeedbacks berücksichtigt werden. KW - tipping element KW - nonlinear dynamics KW - tipping cascade KW - climate change KW - complex networks KW - Klimawandel KW - komplexe Netzwerke KW - nichtlineare Dynamiken KW - Kippkaskade KW - Kippelement Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-525140 ER - TY - THES A1 - Nguyen, Van Khanh Triet T1 - Flood dynamics in the Vietnamese Mekong Delta T1 - Hochwasserdynamik im vietnamesischen Mekong-Delta BT - Current state and future projections BT - Aktueller Stand und künftige Prognosen N2 - Today, the Mekong Delta in the southern of Vietnam is home for 18 million people. The delta also accounts for more than half of the country’s food production and 80% of the exported rice. Due to the low elevation, it is highly susceptible to the risk of fluvial and coastal flooding. Although extreme floods often result in excessive damages and economic losses, the annual flood pulse from the Mekong is vital to sustain agricultural cultivation and livelihoods of million delta inhabitants. Delta-wise risk management and adaptation strategies are required to mitigate the adverse impacts from extreme events while capitalising benefits from floods. However, a proper flood risk management has not been implemented in the VMD, because the quantification of flood damage is often overlooked and the risks are thus not quantified. So far, flood management has been exclusively focused on engineering measures, i.e. high- and low- dyke systems, aiming at flood-free or partial inundation control without any consideration of the actual risks or a cost-benefit analysis. Therefore, an analysis of future delta flood dynamics driven these stressors is valuable to facilitate the transition from sole hazard control towards a risk management approach, which is more cost-effective and also robust against future changes in risk. Built on these research gaps, this thesis investigates the current state and future projections of flood hazard, damage and risk to rice cultivation, the most important economic activity in the VMD. The study quantifies the changes in risk and hazard brought by the development of delta-based flood control measures in the last decades, and analyses the expected changes in risk driven by the changing climate, rising sea-level and deltaic land subsidence, and finally the development of hydropower projects in the Mekong Basin. For this purpose, flood trend analyses and comprehensive hydraulic modelling were performed, together with the development of a concept to quantify flood damage and risk to rice plantation. The analysis of observed flood levels revealed strong and robust increasing trends of peak and duration downstream of the high-dyke areas with a step change in 2000/2001, i.e. after the disastrous flood which initiated the high-dyke development. These changes were in contrast to the negative trends detected upstream, suggested that high-dyke development has shifted flood hazard downstream. Findings of the trend’s analysis were later confirmed by hydraulic simulations of the two recent extreme floods in 2000 and 2011, where the hydrological boundaries and dyke system settings were interchanged. However, the high-dyke system was not the only and often not the main cause for a shift of flood hazard, as a comparative analysis of these two extreme floods proved. The high-dyke development was responsible for 20–90% of the observed changes in flood level between 2000 and 2011, with large spatial variances. The particular flood hydrograph of the two events had the highest contribution in the northern part of the delta, while the tidal level had 2–3 times higher influence than the high-dyke in the lower-central and coastal areas downstream of high-dyke areas. The impact of the high-dyke development was highest in the areas closely downstream of the high-dyke area just south of the Cambodia-Vietnam border. The hydraulic simulations also validated that the concurrence of the flood peak with spring tides, i.e. high sea level along the coast, amplified the flood level and inundation in the central and coastal regions substantially. The risk assessment quantified the economic losses of rice cultivation to USD 25.0 and 115 million (0.02–0.1% of the total GDP of Vietnam in 2011) corresponding to the 10-year and the 100-year floods, with an expected annual damage of about USD 4.5 million. A particular finding is that the flood damage was highly sensitive to flood timing. Here, a 10-year event with an early peak, i.e. late August-September, could cause as much damage as a 100-year event that peaked in October. This finding underlines the importance of a reliable early flood warning, which could substantially reduce the damage to rice crops and thus the risk. The developed risk assessment concept was furthermore applied to investigate two high-dyke development alternatives, which are currently under discussion among the administrative bodies in Vietnam, but also in the public. The first option favouring the utilization of the current high-dyke compartments as flood retention areas instead for rice cropping during the flood season could reduce flood hazard and expected losses by 5–40%, depending on the region of the delta. On the contrary, the second option promoting the further extension of the areas protected by high-dyke to facilitate third rice crop planting on a larger area, tripled the current expected annual flood damage. This finding challenges the expected economic benefit of triple rice cultivation, in addition to the already known reducing of nutrient supply by floodplain sedimentation and thus higher costs for fertilizers. The economic benefits of the high-dyke and triple rice cropping system is further challenged by the changes in the flood dynamics to be expected in future. For the middle of the 21st century (2036-2065) the effective sea-level rise an increase of the inundation extent by 20–27% was projected. This corresponds to an increase of flood damage to rice crops in dry, normal and wet year by USD 26.0, 40.0 and 82.0 million in dry, normal and wet year compared to the baseline period 1971-2000. Hydraulic simulations indicated that the planned massive development of hydropower dams in the Mekong Basin could potentially compensate the increase in flood hazard and agriculture losses stemming from climate change. However, the benefits of dams as mitigation of flood losses are highly uncertain, because a) the actual development of the dams is highly disputed, b) the operation of the dams is primarily targeted at power generation, not flood control, and c) this would require international agreements and cooperation, which is difficult to achieve in South-East Asia. The theoretical flood mitigation benefit is additionally challenged by a number of negative impacts of the dam development, e.g. disruption of floodplain inundation in normal, non-extreme flood years. Adding to the certain reduction of sediment and nutrient load to the floodplains, hydropower dams will drastically impair rice and agriculture production, the basis livelihoods of million delta inhabitants. In conclusion, the VMD is expected to face increasing threats of tidal induced floods in the coming decades. Protection of the entire delta coastline solely with “hard” engineering flood protection structures is neither technically nor economically feasible, adaptation and mitigation actions are urgently required. Better control and reduction of groundwater abstraction is thus strongly recommended as an immediate and high priority action to reduce the land subsidence and thus tidal flooding and salinity intrusion in the delta. Hydropower development in the Mekong basin might offer some theoretical flood protection for the Mekong delta, but due to uncertainties in the operation of the dams and a number of negative effects, the dam development cannot be recommended as a strategy for flood management. For the Vietnamese authorities, it is advisable to properly maintain the existing flood protection structures and to develop flexible risk-based flood management plans. In this context the study showed that the high-dyke compartments can be utilized for emergency flood management in extreme events. For this purpose, a reliable flood forecast is essential, and the action plan should be materialised in official documents and legislation to assure commitment and consistency in the implementation and operation. N2 - Das Mekong-Delta im Süden Vietnams ist die Heimat von 18 Millionen Menschen. Im Delta werden mehr als die Hälfte der Nahrungsmittel des Landes und 80 % des exportierten Reises produziert. Aufgrund der geringen Höhen und Topographie ist das Delta sehr anfällig für Überflutungen, sowohl durch Fußhochwasser als auch durch gezeitenbedingte Rückstauüberflutungen. Obwohl extreme Überschwemmungen oft zu hohen Schäden und wirtschaftlichen Verlusten führen, ist der jährliche Hochwasserimpuls des Mekong lebenswichtig für die Aufrechterhaltung des landwirtschaftlichen Anbaus und des Lebensunterhalts von Millionen Deltabewohnern. Ein deltaweites Risikomanagement bestehend aus Hochwasserschutzmaßnahmen und Anpassungsstrategien ist erforderlich, um die negativen Auswirkungen von Extremereignissen zu mindern, zeitgleich aber auch die positiven Aspekte der Hochwasser beizubehalten. Ein Hochwasserrisikomanagement ist im VMD jedoch nicht implementiert, da die Quantifizierung von Hochwasserschäden typischerweise nicht vorgenommen wird. Bisher konzentriert sich das Hochwassermanagement ausschließlich auf ingenieurtechnische Maßnahmen zur Eindämmung der Gefährdung. Dies geschieht entweder durch Hoch- oder Niederdeichung, die auf eine hochwasserfreie oder teilweise Überflutungssteuerung abzielen. Eine risikobasierte Bewertung der Vor- und Nachteile zwischen Hoch- und Niederdeichansatz sowie Kosten-Nutzen-Rechnungen fehlen allerdings ebenfalls. Zudem ist zu erwarten, dass sich die Überschwemmungen Dynamik und das Hochwasserrisiko im Mekong Delta als Folge des Klimawandels und menschlicher Eingriffe in das Delta und das Mekong-Einzugsgebiet verändern werden. Die Analyse der zukünftigen Hochwasserdynamik in Abhängigkeit von diesen Stressoren ist notwendig, um den Übergang von einer alleinigen Gefahrenabwehr zu einem zukunftssicheren, probabilistischen Risikomanagement zu erleichtern. Ausgehend von diesen Forschungslücken untersucht diese Arbeit den aktuelle Hochwassergefährdung und die zu erwartenden zukünftigen Änderungen, sowie der damit einhergehenden Schäden und Risiken für den Reisanbau im Mekong Delta unter Berücksichtigung existierender und möglicher Hochwasserschutzmaßnahmen, des sich ändernden Klimas, des steigenden Meeresspiegels in Kombination mit der Landabsenkung des Deltas und der geplanten Staudämme im Mekong Einzugsgebiet. Eine Analyse der jährlichen Hochwasserpegel zeigte starke und robuste steigende Trends in den maximalen Wasserständen der Hochwasser und der Hochwasserdauer flussabwärts der Hochdeichgebiete, wobei eine sprunghafte Veränderung in den Jahren 2000/2001 nach. dem katastrophalen Hochwasser, das die Hochdeichentwicklung einleitete, festgestellt wurde. Diese Veränderungen stehen im Gegensatz zu den negativen Trends, oberstrom der Hocdeichgebiete, was darauf schließen lässt, dass die Hochdeichentwicklung die Hochwassergefahr flussabwärts verlagert hat. Die Ergebnisse der Trendanalyse wurden weiterhin durch hydraulische Simulationen der Überflutungsdynamiken der Hochwasser von 2000 und 2011 bestätigt. Allerdings waren die Hochdeiche nicht die Haupt- und einzige Ursache für den höheren Hochwasserpegel im Jahr 2011 im Vergleich zum Hochwasser im Jahr 2000. Die Hochwasserganglinie des Mekongs hatte den höchsten Beitrag im nördlichen Teil des Deltas oberstrom der Hochdeichgebiete, während der Tidenhub in den zentralen und küstennahen Gebieten stromabwärts des Hochdeichs einen 2-3 mal höheren Einfluss hatte als die Hochdeiche. Die wirtschaftlichen Verluste des Reisanbaus wurden rezent auf 25,0-115 Mio. USD geschätzt, für jeweils das 10- und 100-jährliche Hochwasser. Die Schäden sind hierbei sehr sensitiv gegenüber der Hochwasserganglinie, insbesondere dem Zeitpunkt des Auftretens des Hochwasserscheitels. Ein frühes 10-jährliches Hochwasser kann aufgrund des Zusammentreffens des Hochwassers mit der Ernte der Frühjahrsaussaat oder der Aussaat der Sommerfrucht ähnliche Verluste verursachen wie ein 100-jährliches Ereignis, das im Oktober seinen Höhepunkt erreicht. Neben dem Anbau einer dritten Frucht im Jahr könnten die existierenden Hochdeichabschnitte als Hochwasserrückhalteräume genutzt werden und so die Hochwassergefahr und die zu erwartenden Schäden um 5-40% reduzieren. Umgekehrt würde ein weiterer Ausbau der Hochdeiche die derzeit erwarteten jährlichen Hochwasserschäden verdreifachen. Die Zukunftsprojektionen des Hochwasserrisikos ergaben, dass das Mekong Delta in den nächsten Jahrzehnten zunehmend von tidebedingten Überschwemmungen bedroht sein wird. Der Anstieg des Meeresspiegels in Kombination mit der Landabsenkung erhöht das Ausmaß der Überflutung des Deltas um 20% und den Schaden an der Reisernte um 40-85 Mio. USD. Technische Hochwasserschutzmaßnahmen können diesen Anstieg des Risikos nicht verhindern, da der Schutz des gesamten Deltas allein durch harte Hochwasserschutzbauten technisch und wirtschaftlich nicht realisierbar ist. Daher sind Maßnahmen zur Schadensminderung und zur Anpassung an das veränderte Risiko dringend erforderlich. Als erster und wichtiger Schritt wird hier eine bessere Kontrolle und Reduzierung der Grundwasserentnahme im Delta dringend empfohlen, um die Landabsenkung und dadurch die tidenbedingten Überflutungen sowie die Salzwasserintrusion zu verringern. Der Klimawandel und die daraus resultierenden Veränderungen im Hochwasserregime des Mekong verursachen eine weitere, aber geringere Erhöhung des Hochwasserrisikos. Die geplanten Staudämme im Mekong Einzugsgebiet könnten die Zunahme der Hochwassergefahr und der landwirtschaftlichen Verluste aufgrund des Klimawandels in extremen Hochwasserjahren zumindest theoretisch abmildern. Der Nutzen von Dämmen zur Minderung des Hochwasserrisikos ist jedoch ungewiss, da die Realisierung der geplanten Dämme sehr umstritten und damit unsicher ist. Weiterhin spielt das Management der Staudämme eine wichtige Rolle für die Hochwasserregulierung. Da die Dämme in erste Linie zur Stromerzeugung gebaut werden, ist der Hochwasserschutz der unterliegenden Anrainerstaaten eher von untergeordneter Bedeutung. Für Vietnam bedeutet das, dass eine ordnungsgemäße Instandhaltung von Deichen und Hochwasserschutzbauten eine hohe Priorität haben sollte, um Abhängigkeiten von den Nachbarstaaten zu vermeiden. Weiterhin ist die Entwicklung von „weichen“ Hochwasserschutzmaßnahmen und -plänen dringend notwendig, da ein alleiniger Schutz durch technische Maßnahmen unmöglich ist. Aufgrund der in dieser Arbeit erzielten Ergebnisse wird daher empfohlen, die Hochdeichkompartimente für das Notfall-Hochwassermanagement bei Extremereignissen zu nutzen. Zu diesem Zweck ist eine verlässliche Hochwasservorhersage unerlässlich, und der Aktionsplan sollte in offiziellen Dokumenten und Gesetzen festgehalten werden, um die Verbindlichkeit und konsequente Umsetzung sicherzustellen. KW - Mekong Delta KW - flood hazard KW - flood risk KW - climate change KW - Mekong Delta KW - Klimawandel KW - Hochwassergefahr KW - Hochwasserrisiko Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-512830 ER - TY - THES A1 - Brugger, Julia T1 - Modeling changes in climate during past mass extinctions T1 - Modellierung von Klimaveränderungen während vergangener Massenaussterben N2 - The evolution of life on Earth has been driven by disturbances of different types and magnitudes over the 4.6 million years of Earth’s history (Raup, 1994, Alroy, 2008). One example for such disturbances are mass extinctions which are characterized by an exceptional increase in the extinction rate affecting a great number of taxa in a short interval of geologic time (Sepkoski, 1986). During the 541 million years of the Phanerozoic, life on Earth suffered five exceptionally severe mass extinctions named the “Big Five Extinctions”. Many mass extinctions are linked to changes in climate (Feulner, 2009). Hence, the study of past mass extinctions is not only intriguing, but can also provide insights into the complex nature of the Earth system. This thesis aims at deepening our understanding of the triggers of mass extinctions and how they affected life. To accomplish this, I investigate changes in climate during two of the Big Five extinctions using a coupled climate model. During the Devonian (419.2–358.9 million years ago) the first vascular plants and vertebrates evolved on land while extinction events occurred in the ocean (Algeo et al., 1995). The causes of these formative changes, their interactions and their links to changes in climate are still poorly understood. Therefore, we explore the sensitivity of the Devonian climate to various boundary conditions using an intermediate-complexity climate model (Brugger et al., 2019). In contrast to Le Hir et al. (2011), we find only a minor biogeophysical effect of changes in vegetation cover due to unrealistically high soil albedo values used in the earlier study. In addition, our results cannot support the strong influence of orbital parameters on the Devonian climate, as simulated with a climate model with a strongly simplified ocean model (De Vleeschouwer et al., 2013, 2014, 2017). We can only reproduce the changes in Devonian climate suggested by proxy data by decreasing atmospheric CO2. Still, finding agreement between the evolution of sea surface temperatures reconstructed from proxy data (Joachimski et al., 2009) and our simulations remains challenging and suggests a lower δ18O ratio of Devonian seawater. Furthermore, our study of the sensitivity of the Devonian climate reveals a prevailing mode of climate variability on a timescale of decades to centuries. The quasi-periodic ocean temperature fluctuations are linked to a physical mechanism of changing sea-ice cover, ocean convection and overturning in high northern latitudes. In the second study of this thesis (Dahl et al., under review) a new reconstruction of atmospheric CO2 for the Devonian, which is based on CO2-sensitive carbon isotope fractionation in the earliest vascular plant fossils, suggests a much earlier drop of atmo- spheric CO2 concentration than previously reconstructed, followed by nearly constant CO2 concentrations during the Middle and Late Devonian. Our simulations for the Early Devonian with identical boundary conditions as in our Devonian sensitivity study (Brugger et al., 2019), but with a low atmospheric CO2 concentration of 500 ppm, show no direct conflict with available proxy and paleobotanical data and confirm that under the simulated climatic conditions carbon isotope fractionation represents a robust proxy for atmospheric CO2. To explain the earlier CO2 drop we suggest that early forms of vascular land plants have already strongly influenced weathering. This new perspective on the Devonian questions previous ideas about the climatic conditions and earlier explanations for the Devonian mass extinctions. The second mass extinction investigated in this thesis is the end-Cretaceous mass extinction (66 million years ago) which differs from the Devonian mass extinctions in terms of the processes involved and the timescale on which the extinctions occurred. In the two studies presented here (Brugger et al., 2017, 2021), we model the climatic effects of the Chicxulub impact, one of the proposed causes of the end-Cretaceous extinction, for the first millennium after the impact. The light-dimming effect of stratospheric sulfate aerosols causes severe cooling, with a decrease of global annual mean surface air temperature of at least 26◦C and a recovery to pre-impact temperatures after more than 30 years. The sudden surface cooling of the ocean induces deep convection which brings nutrients from the deep ocean via upwelling to the surface ocean. Using an ocean biogeochemistry model we explore the combined effect of ocean mixing and iron-rich dust originating from the impactor on the marine biosphere. As soon as light levels have recovered, we find a short, but prominent peak in marine net primary productivity. This newly discovered mechanism could result in toxic effects for marine near-surface ecosystems. Comparison of our model results to proxy data (Vellekoop et al., 2014, 2016, Hull et al., 2020) suggests that carbon release from the terrestrial biosphere is required in addition to the carbon dioxide which can be attributed to the target material. Surface ocean acidification caused by the addition of carbon dioxide and sulfur is only moderate. Taken together, the results indicate a significant contribution of the Chicxulub impact to the end-Cretaceous mass extinction by triggering multiple stressors for the Earth system. Although the sixth extinction we face today is characterized by human intervention in nature, this thesis shows that we can gain many insights into future extinctions from studying past mass extinctions, such as the importance of the rate of change (Rothman, 2017), the interplay of multiple stressors (Gunderson et al., 2016), and changes in the carbon cycle (Rothman, 2017, Tierney et al., 2020). N2 - In den 4,6 Milliarden Jahren Erdgeschichte wurde die Entwicklung des Lebens durch Störungen unterschiedlichster Art geprägt (Raup, 1994, Alroy, 2008). Ein Beispiel für solche Störungen sind Massenaussterben. Diese sind durch einen außergewöhnlichen Anstieg der Aussterberate einer großen Anzahl von Taxa in einem kurzen geologischen Zeitintervall gekennzeichnet (Sepkoski, 1986). Während der 541 Millionen Jahre des Phanerozoikums traten fünf außergewöhnlich schwere Massenaussterben auf. Viele Massenaussterben stehen mit Klimaveränderungen im Zusammenhang (Feulner, 2009). Die Untersuchung vergangener Massenaussterben ist daher nicht nur faszinierend, sondern gibt auch Einblicke in die komplexen Prozesse des Erdsystems. Diese Dissertation möchte unser Verständnis für die Auslöser von Massenaussterben sowie deren Auswirkungen auf das Leben erweitern. Dazu untersuche ich die Klimaveränderungen während zwei der fünf großen Aussterbeereignisse mit Hilfe eines gekoppelten Klimamodells. Während des Devons (vor 419,2-358,9 Millionen Jahren) entwickelten sich die ersten Gefäßpflanzen und Wirbeltiere an Land, während im Ozean Massenaussterben statt- fanden (Algeo et al., 1995). Die Ursachen dieser tiefgreifenden Veränderungen, ihre Wechselwirkungen und ihre Zusammenhänge mit Klimaveränderungen sind noch wenig verstanden. Daher untersuchen wir die Sensitivität des Klimas des Devons bezüglich verschiedener Randbedingungen mit einem Klimamodell mittlerer Komplexität (Brugger et al., 2019). Im Gegensatz zu Le Hir et al. (2011), die unrealistisch hohe Albedo Werte für den Boden verwenden, finden wir nur einen geringen biogeophysikalischen Einfluss von Änderungen der Vegetationsbedeckung. Außerdem können unsere Simulationen den starken Einfluss von Orbitalparametern, der mit einem Klimamodell mit stark vereinfachtem Ozeanmodell (De Vleeschouwer et al., 2013, 2014, 2017) simuliert wurde, nicht reproduzieren. Die in Proxydaten gefundenen klimatischen Veränderungen im Devon können wir nur durch eine Verringerung des atmosphärischen CO2 simulieren. Dennoch bleibt es eine Herausforderung, eine Übereinstimmung zwischen der aus Proxydaten (Joachimski et al., 2009) rekonstruierten Entwicklung der Meeresoberflächentemperatu- ren und unseren Simulationen zu finden. Dies deutet auf ein niedrigeres δ18O-Verhältnis des Meerwassers im Devon hin. Außerdem finden wir im Rahmen unserer Sensitivitäts- studien eine Klimavariabilität auf einer Zeitskala von Jahrzehnten bis Jahrhunderten. Die quasi-periodischen Schwankungen der Ozeantemperatur werden durch einen physikalischen Mechanismus aus sich verändernder Meereisbedeckung, Konvektion und Umwälzbewegung in den hohen nördlichen Breiten des Ozeans angetrieben. In der zweiten Studie dieser Dissertation (Dahl et al., under review) präsentieren wir eine neue Rekonstruktion des atmosphärischen CO2 für das Devon, die auf CO2-sensitiver Kohlenstoffisotopenfraktionierung in den frühesten Gefäßpflanzenfossilien basiert. Diese zeigt einen viel früheren Abfall der atmosphärischen CO2-Konzentration als bisherige Rekonstruktionen, gefolgt von nahezu konstanten CO2-Konzentrationen während des Mittel- und Spätdevon. Unsere Simulationen für das frühe Devon mit identischen Rand- bedingungen wie in unserer Sensitivitätsstudie (Brugger et al., 2019), jedoch mit einer niedrigen atmosphärischen CO2-Konzentration von 500ppm, zeigen keinen direkten Konflikt mit verfügbaren Proxy- und paläobotanischen Daten. Zusätzlich bestätigen die Simulationen, dass unter den simulierten klimatischen Bedingungen die Kohlenstoff- Isotopenfraktionierung einen robusten Proxy für atmosphärisches CO2 darstellt. Um den früheren CO2-Abfall zu erklären, schlagen wir vor, dass frühe Formen von vaskulären Landpflanzen die Verwitterung bereits stark beeinflusst haben. Diese neue Sichtweise auf das Devon stellt bisherige Vorstellungen über die klimatischen Bedingungen und frühere Erklärungen für die devonischen Massenaussterben in Frage. Das zweite in dieser Arbeit untersuchte Massenaussterben ist das Massenaussterben der späten Kreidezeit (vor 66 Millionen Jahren), das sich von denen im Devon in Bezug auf die beteiligten Prozesse und die Zeitskala der Aussterben unterscheidet. Eine der diskutierten Ursachen dieses Massenaussterbens ist der Chicxulub-Meteoriten-Einschlag. In den beiden hier vorgestellten Studien (Brugger et al., 2017, 2021) modellieren wir die klimatischen Auswirkungen des Chicxulub Einschlags für das erste Jahrtausend nach dem Einschlag. Die durch die stratosphärischen Sulfataerosole verringerte Son- neneinstrahlung verursacht eine starke Abkühlung: die global und jährlich gemittelte Oberflächenlufttemperatur nimmt um mindestens 26◦C ab und erholt sich erst nach mehr als 30 Jahren. Die plötzliche Abkühlung der Ozeanoberfläche löst bis in große Tiefen reichende Konvektion aus, die zum Nährstofftransport aus dem tiefen Ozean an die Ozea- noberfläche führt. Mit Hilfe eines biogeochemischen Modells des Ozeans untersuchen wir die kombinierte Wirkung dieser Durchmischung des Ozeans und eisenreichen Staubs aus dem Meteoriten auf die marine Biosphäre. Sobald wieder genügend Sonneneinstrahlung auf die Erdoberfläche trifft, erreicht die marine Nettoprimärproduktion ein kurzes, aber markantes Maximum. Dieser neu entdeckte Mechanismus könnte toxische Folgen für oberflächennahe Ökosysteme des Ozeans haben. Der Vergleich unserer Modellergebnisse mit Proxydaten (Vellekoop et al., 2014, 2016, Hull et al., 2020) deutet darauf hin, dass zusätzlich zum CO2 aus dem Gestein des Einschlagortes Kohlenstoff aus der terrest- rischen Biosphäre freigesetzt wird. Die Versauerung des Oberflächenozeans durch die Zugabe von CO2 und Schwefel ist nur moderat. Insgesamt deuten die Ergebnisse darauf hin, dass der Chicxulub Einschlag einen wesentlichen Beitrag zum Massenaussterben der späten Kreidezeit leistete, indem er das Erdsystem multiplen Stressoren aussetzte. Auch wenn das heutige sechste Aussterben durch menschliche Eingriffe in die Natur geprägt ist, zeigt diese Dissertation, dass wir aus dem Studium vergangener Massenaussterben viele Erkenntnisse über zukünftige Massenaussterben gewinnen können, wie z. B. die Bedeutung der Änderungsrate (Rothman, 2017), ein besseres Verständnis des Zusammenspiels multipler Stressoren (Gunderson et al., 2016) und die Rolle von Veränderungen im Kohlenstoffkreislauf (Rothman, 2017, Tierney et al., 2020). KW - earth system modeling KW - mass extinctions KW - paleoclimatology KW - climate change KW - Erdsystem Modellierung KW - Klimawandel KW - Massenaussterben KW - Paleoklimatologie Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-532468 ER -