TY - THES A1 - Doriti, Afroditi T1 - Sustainable bio-based poly-N-glycines and polyesters T1 - Nachhaltige biobasierte Poly-N-Glycine und Polyester N2 - Nowadays, the need to protect the environment becomes more urgent than ever. In the field of chemistry, this translates to practices such as waste prevention, use of renewable feedstocks, and catalysis; concepts based on the principles of green chemistry. Polymers are an important product in the chemical industry and are also in the focus of these changes. In this thesis, more sustainable approaches to make two classes of polymers, polypeptoids and polyesters, are described. Polypeptoids or poly(alkyl-N-glycines) are isomers of polypeptides and are biocompatible, as well as degradable under biologically relevant conditions. In addition to that, they can have interesting properties such as lower critical solution temperature (LCST) behavior. They are usually synthesized by the ring opening polymerization (ROP) of N-carboxy anhydrides (NCAs), which are produced with the use of toxic compounds (e.g. phosgene) and which are highly sensitive to humidity. In order to avoid the direct synthesis and isolation of the NCAs, N-phenoxycarbonyl-protected N-substituted glycines are prepared, which can yield the NCAs in situ. The conditions for the NCA synthesis and its direct polymerization are investigated and optimized for the simplest N-substituted glycine, sarcosine. The use of a tertiary amine in less than stoichiometric amounts compared to the N-phenoxycarbonyl--sarcosine seems to accelerate drastically the NCA formation and does not affect the efficiency of the polymerization. In fact, well defined polysarcosines that comply to the monomer to initiator ratio can be produced by this method. This approach was also applied to other N-substituted glycines. Dihydroxyacetone is a sustainable diol produced from glycerol, and has already been used for the synthesis of polycarbonates. Here, it was used as a comonomer for the synthesis of polyesters. However, the polymerization of dihydroxyacetone presented difficulties, probably due to the insolubility of the macromolecular chains. To circumvent the problem, the dimethyl acetal protected dihydroxyacetone was polymerized with terephthaloyl chloride to yield a soluble polymer. When the carbonyl was recovered after deprotection, the product was insoluble in all solvents, showing that the carbonyl in the main chain hinders the dissolution of the polymers. The solubility issue can be avoided, when a 1:1 mixture of dihydroxyacetone/ ethylene glycol is used to yield a soluble copolyester. N2 - Heutzutage wird die Notwendigkeit, die Umwelt zu schützen, dringender denn je. Auf dem Gebiet der Chemie bedeutet dies Praktiken wie Abfallvermeidung, Verwendung nachwachsender Rohstoffe und Katalyse, Konzepte, die auf den Prinzipien der grünen Chemie basierend sind. Polymere sind ein wichtiges Produkt in der chemischen Industrie und stehen auch im Fokus dieser Veränderungen. In dieser Arbeit werden nachhaltigere Ansätze zur Herstellung von zwei Klassen von Polymeren, Polypeptoiden und Polyestern beschrieben. Polypeptoide oder Poly (alkyl-N-glycine) sind Isomere von Polypeptiden und sind biokompatibel sowie unter biologisch relevanten Bedingungen abbaubar. Darüber hinaus können sie interessante Eigenschaften wie das LCST-Verhalten (Lower Critical Solution Temperature) aufweisen. Sie werden üblicherweise durch die Ringöffnungspolymerisation (ROP) von N-Carboxyanhydriden (NCAs) synthetisiert, die unter Verwendung von toxischen Verbindungen (z. B. Phosgen) hergestellt werden und die gegenüber Feuchtigkeit sehr empfindlich sind. Um die direkte Synthese und Isolierung der NCAs zu vermeiden, werden N-Phenoxycarbonyl-geschützte N-substituierte Glycine hergestellt, die die NCAs in situ liefern können. Die Bedingungen für die NCA-Synthese und ihre direkte Polymerisation wurden für das einfachste N-substituierte Glycin, Sarcosin, untersucht und optimiert. Die Verwendung eines tertiären Amins in weniger als stöchiometrischen Mengen im Vergleich zum N-Phenoxycarbonyl-Sarkosin scheint die NCA-Bildung drastisch zu beschleunigen und beeinflusst die Effizienz der Polymerisation nicht. In der Tat können mit diesem Verfahren gut definierte Polysarkosine hergestellt werden, die dem Verhältnis von Monomer zu Initiator entsprechen. Dieser Ansatz wurde auch auf andere N-substituierte Glycine angewendet. Dihydroxyaceton ist ein aus Glycerin hergestelltes, nachhaltiges Diol, das bereits für die Synthese von Polycarbonaten verwendet wurde. Hier wurde es als Comonomer für die Synthese von Polyestern verwendet. Die Polymerisation von Dihydroxyaceton zeigte jedoch Schwierigkeiten, wahrscheinlich aufgrund der Unlöslichkeit der makromolekularen Ketten. Um das Problem zu umgehen, wurde das Dimethylacetal-geschützte Dihydroxyaceton mit Terephthaloylchlorid polymerisiert, um ein lösliches Polymer zu ergeben. Wenn das Carbonyl nach der Entschützung zurückgewonnen wurde, war das Produkt in allen Lösungsmitteln unlöslich, was zeigt, dass das Carbonyl in der Hauptkette das Lösen der Polymere behindert. Das Löslichkeitsproblem kann vermieden werden, wenn eine 1: 1-Mischung von Dihydroxyaceton / Ethylenglycol verwendet wird, um einen löslichen Copolyester zu ergeben. KW - ROP KW - N-alkyl-glycine KW - polypeptoids KW - activated urethane KW - dihydroxyacetone KW - polycondensation KW - polyesters KW - Ringöffnungspolymerisation KW - N-Alkylglycin KW - Polypeptoide KW - aktiviertes Urethan KW - Dihydroxyaceton KW - Polykondensation KW - Polyester Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-411286 ER -