TY - THES A1 - Fortes Martín, Rebeca T1 - Water-in-oil microemulsions as soft-templates to mediate nanoparticle interfacial assembly into hybrid nanostructures T1 - Wasser-in-Öl Mikroemulsionen als Soft-Templat für die Grenzfläche-Anordnung von Nanopartikeln in hybride Nanostrukturen T1 - Microemulsiones de aceite-en-agua como estructuras templadas blandas para el ensamblaje de nanoparticulas en su interfase dando nanoestructuras híbridas N2 - Hybrid nanomaterials offer the combination of individual properties of different types of nanoparticles. Some strategies for the development of new nanostructures in larger scale rely on the self-assembly of nanoparticles as a bottom-up approach. The use of templates provides ordered assemblies in defined patterns. In a typical soft-template, nanoparticles and other surface-active agents are incorporated into non-miscible liquids. The resulting self-organized dispersions will mediate nanoparticle interactions to control the subsequent self-assembly. Especially interactions between nanoparticles of very different dispersibility and functionality can be directed at a liquid-liquid interface. In this project, water-in-oil microemulsions were formulated from quasi-ternary mixtures with Aerosol-OT as surfactant. Oleyl-capped superparamagnetic iron oxide and/or silver nanoparticles were incorporated in the continuous organic phase, while polyethyleneimine-stabilized gold nanoparticles were confined in the dispersed water droplets. Each type of nanoparticle can modulate the surfactant film and the inter-droplet interactions in diverse ways, and their combination causes synergistic effects. Interfacial assemblies of nanoparticles resulted after phase-separation. On one hand, from a biphasic Winsor type II system at low surfactant concentration, drop-casting of the upper phase afforded thin films of ordered nanoparticles in filament-like networks. Detailed characterization proved that this templated assembly over a surface is based on the controlled clustering of nanoparticles and the elongation of the microemulsion droplets. This process offers versatility to use different nanoparticle compositions by keeping the surface functionalization, in different solvents and over different surfaces. On the other hand, a magnetic heterocoagulate was formed at higher surfactant concentration, whose phase-transfer from oleic acid to water was possible with another auxiliary surfactant in ethanol-water mixture. When the original components were initially mixed under heating, defined oil-in-water, magnetic-responsive nanostructures were obtained, consisting on water-dispersible nanoparticle domains embedded by a matrix-shell of oil-dispersible nanoparticles. Herein, two different approaches were demonstrated to form diverse hybrid nanostructures from reverse microemulsions as self-organized dispersions of the same components. This shows that microemulsions are versatile soft-templates not only for the synthesis of nanoparticles, but also for their self-assembly, which suggest new approaches towards the production of new sophisticated nanomaterials in larger scale. N2 - Hybride Nanomaterialen ermöglichen die Kombination von individuellen Eigenschaften jeder Art von Nanopartikeln. Einige Strategien für die Herstellung neuer großskaliger Nanostrukturen beruhen auf der Selbstassemblierung von Nanopartikeln über einen Bottom-up-Ansatz. Die Nutzung von Templatstrukturen ermöglicht Anordnungen in definierten Mustern. In einem typischen Soft-Templat werden Nanopartikel und andere oberflächenaktive Wirkstoffe in nicht-mischbare Flüssigkeiten eingebracht. Die resultierenden selbst-organisierten Dispersionen beeinflussen die Nanopartikel Interaktionen und kontrollieren die nachfolgende Selbstassemblierung. Insbesondere Interaktionen zwischen Nanopartikeln mit sehr unterschiedlicher Dispergierbarkeit und Funktionalität können Interaktionen an einer Flüssig-Flüssig Grenzfläche gerichtet werden. In diesem Forschungsprojekt wurden Wasser-in-Öl Mikroemulsionen aus quasi-ternären Mischungen mit Aerosol-OT als Tensid hergestellt. Oleyl-beschichtete superparamagnetische Eisenoxid und/oder Silber Nanopartikel wurden in der kontinuierlichen Ölphase eingebracht, während die Polyethyleneimin-stabilisierten Gold Nanopartikel in feinverteilte Wassertröpfchen inkorporiert wurden. Jede Sorte von Nanopartikeln kann den Tensidfilm und die Tröpfchen-Interaktionen auf verschiedene Weise beeinflussen, und seine Kombination führt dabei zu synergetischen Effekten. Die Anordnung von Nanopartikeln an der Grenzfläche basiert auf der Phasentrennung. Auf der einen Seite, bildeten sich aus einem zweiphasigen Winsor II System mit niedrigen Tensid Konzentrationen durch Evaporation der oberen Phase dünne Schichten aus geordneten Nanopartikeln in Form von Filament-Netzen aus. Eine detaillierte Charakterisierung zeigte, dass die Filament-artige Strukturierung auf ein kontrolliertes Nanopartikeln-Clustering und auf die Ausdehnung der Mikroemulsions-Tröpfchen zurückzuführen ist. Dieser Prozess eröffnet flexible Einsatzmöglichkeiten für unterschiedliche Nanopartikel Kompositionen, indem die Oberflächenfunktionalisierung in unterschiedlichen Lösungsmitteln erhalten bleibt, und auch für verschiedenen Lösungsmitteln und über verschiedene Flächen. Auf der anderen Seite wurde ein magnetisches Heterokoagulat in höheren Tensid Konzentration hergestellt, dessen Phasentransfer von Ölsäure in Wasser mit einem anderen zusätzlichen Tensid in einer Ethanol-Wasser Mischung ermöglicht wurde. In Abhängigkeit von der Ausgangstemperatur der initialen Komponenten konnten definierte magnetisch-stimulierbare Öl-in-Wasser Nanostrukturen erhaltet werden. Dabei gelang es Wasser-dispergierbare Nanopartikelkompartimente in eine Matrix-Hülle aus Öl-dispergierbaren Nanopartikeln einzubetten. In dieser Arbeit wurden zwei verschiedene Wege aufgezeigt, um hybride Nanostrukturen aus inversen Mikroemulsionen selbst-organisiert herzustellen. Dies belegt, dass Mikroemulsions-Template nicht nur für die Nanopartikel Synthese geeignet sind, sondern auch für die Herstellung filamentartiger, selbstorganisierter Systeme. Es eröffnen sich hiermit neue Zugänge für die selbstorganisierte Strukturierung von Nanopartikeln auf der Mikrometerskala. N2 - Los nanomateriales híbridos ofrecen la combinación de propiedades individuales de diferentes tipos de nanopartículas. Algunas estrategias para el desarrollo de nuevas nanoestructuras en mayor escala se basan en el auto-ensamblaje (self-assembly) de nanopartículas, como una estrategia “de abajo hacia arriba” (bottom-up). El uso de estructuras de plantilla (templates) proporciona ensamblajes ordenados de formas definidas. En una plantilla blanda típica, las nanopartículas y otros agentes de actividad superficial se incorporan en líquidos no miscibles. Esto da lugar a dispersiones auto-organizadas que mediarán las interacciones entre las nanopartículas, para controlar su auto-ensamblaje resultante. Especialmente las interacciones entre nanopartículas de dispersibilidad y funcionalidades muy diferentes pueden ser redirigidas a una interfase líquido-líquido. En este proyecto se formularon microemulsiones de agua-en-aceite a partir de mezclas cuasi-ternarias con Aerosol-OT (docusato de sodio) como tensioactivo. Las nanopartículas cubiertas de ligandos oleicos, de óxido de hierro superparamagnéticas o de plata, se incorporaron en la fase orgánica continua, mientras que las nanopartículas de oro estabilizadas por polietilenimina fueron confinadas en las gotículas de agua dispersas. Cada tipo de nanopartícula puede modular de fomas muy diversas la capa de tensioactivo y las interacciones entre gotículas, y además su combinación resulta en efectos sinérgicos. Los ensamblajes interfase de nanopartículas se obtuvieron bajo procesos de separación entre fases. Por un lado, a partir de un sistema bifásico de Winsor del tipo II con baja concentración del tensioactivo, la deposición y evaporación de una gota sobre una superficie (drop-casting) de la fase superior proporcionó películas finas de nanopartículas ordenadas como redes de filamentos. Su caracterización detallada probó que este ensamblaje por plantilla sobre una superficie se basa en un agrupamiento (clustering) controlado entre nanopartículas y en la elongación de las gotículas de microemulsiones. Este proceso ofrece versatilidad para usar diferentes composiciones de nanopartículas siempre que su funcionalidad en su superficie se mantenga, además de poder usar diferentes disolventes y sobre diferentes superficies. Por otro lado, un heterocoagulado magnético se formó sobre concentraciones más altas del tensioactivo, y su transferencia de fase desde ácido oleico a agua fue posible usando otro tensioactivo auxiliar en una mezcla de agua y etanol. Cuando los componentes iniciales fueron mezclados al principio bajo calentamiento, se obtuvieron nanoestucturas definidas de aceite-en-agua que responden a un imán, las cuales consisten de dominios de nanopartículas dispersibles en agua que se rodean por un embalaje (matrix-shell) de nanopartículas dispersibles en fase oleosa. De este modo, se demostraron dos propuestas para formar diversos tipos de nanoestructuras híbridas a partir de microemulsiones inversas como dispersiones auto-organizadas de unos mismos componentes. Esto demuestra que las microemulsiones constituyen estructuras de plantilla blandas no sólo para la síntesis de nanopartículas, sino también para su auto-ensamblaje, lo que sugiere novedosas estrategias para la producción de nuevos nanomateriales sofisticados en mayor escala. KW - microemulsions KW - nanoparticles KW - surfactants KW - Colloid Chemistry KW - soft-templates KW - nanostructures KW - nanoparticle assembly KW - hybrid nanostructures KW - Kolloidchemie KW - hybride Nanostrukturen KW - Mikroemulsionen KW - Nanopartikeln-Anordnung KW - Nanopartikeln KW - Nanostrukturen KW - Soft-Templaten KW - Tenside KW - Química de Coloides KW - nanoestructuras híbridas KW - microemulsiones KW - ensamblaje de nanopartículas KW - nanopartículas KW - nanoestructuras KW - estructuras templadas blandas KW - tensioactivos Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-571801 ER - TY - THES A1 - Badetko, Dominik T1 - Untersuchungen zur Totalsynthese von Arylnaphthalen-Lignanen mittels Photo-Dehydro-Diels-Alder-Reaktion als Schlüsselschritt T1 - Studies on the total synthesis of arylnaphthalene lignans using Photo-Dehydro-Diels-Alder reaction as a key step N2 - Im Rahmen dieser Dissertation wurden die erstmaligen Totalsynthesen der Arylnaphthalen-Lignane Alashinol D, Vitexdoin C, Vitrofolal E, Noralashinol C1 und Ternifoliuslignan E vorgestellt. Der Schlüsselschritt der entwickelten Methode, basiert auf einer regioselektiven intramolekularen Photo-Dehydro-Diels-Alder (PDDA)-Reaktion, die mittels UV-Strahlung im Durchflussreaktor durchgeführt wurde. Bei der Synthese der PDDA-Vorläufer (Diarylsuberate) wurde eine Synthesestrategie nach dem Baukastenprinzip verfolgt. Diese ermöglicht die Darstellung asymmetrischer komplexer Systeme aus nur wenigen Grundbausteinen und die Totalsynthese einer Vielzahl an Lignanen. In systematischen Voruntersuchungen konnte zudem die klare Überlegenheit der intra- gegenüber der intermolekularen PDDA-Reaktion aufgezeigt werden. Dabei stellte sich eine Verknüpfung der beiden Arylpropiolester über einen Korksäurebügel, in para-Position, als besonders effizient heraus. Werden asymmetrisch substituierte Diarylsuberate, bei denen einer der endständigen Estersubstituenten durch eine Trimethylsilyl-Gruppe oder ein Wasserstoffatom ersetzt wurde, verwendet, durchlaufen diese Systeme eine regioselektive Cyclisierung und als Hauptprodukt werden Naphthalenophane mit einem Methylester in 3-Position erhalten. Mit Hilfe von umfangreichen Experimenten zur Funktionalisierung der 4-Position, konnte zudem gezeigt werden, dass die Substitution der nucleophilen Cycloallen-Intermediate, während der PDDA-Reaktion, generell durch die Zugabe von N-Halogen-Succinimiden möglich ist. In Anbetracht der geringen Ausbeuten haben diese intermolekularen Abfangreaktionen, jedoch keinen präparativen Nutzen für die Totalsynthesen von Lignanen. Mit dem Ziel die allgemeinen photochemischen Reaktionsbedingungen zu optimieren, wurde erstmalig die triplettsensibilisierte PDDA-Reaktion vorgestellt. Durch die Verwendung von Xanthon als Sensibilisator wurde der Einsatz von effizienteren UVA-Lichtquellen ermöglicht, wodurch die Gefahr einer Photozersetzung durch Überbestrahlung minimiert wurde. Im Vergleich zur direkten Anregung mit UVB-Strahlung, konnten die Ausbeuten mit indirekter Anregung durch einen Photokatalysator signifikant gesteigert werden. Die grundlegenden Erkenntnisse und die entwickelten Synthesestrategien dieser Arbeit, können dazu beitragen zukünftig die Erschließung neuer pharmakologisch interessanter Lignane voranzutreiben. 1 Bisher ist nur die semisynthetische Darstellung von Noralashinol C ausgehend von Hydroxymatairesinol literaturbekannt. N2 - In this dissertation, the first total syntheses of the arylnaphthalene lignans alashinol D, vitexdoin C, vitrofolal E, noralashinol C (1) and ternifoliuslignan E were presented. The key step of the developed method, is based on a regioselective intramolecular photo-dehydro-Diels-Alder (PDDA) reaction, which was carried out using UV radiation in a flow reactor. For the synthesis of the PDDA precursors (diaryl suberates), a synthesis strategy based on the modular principle was followed. This allows the preparation of asymmetric complex systems from only a few basic building blocks and the total synthesis of a large number of lignans. Systematic preliminary studies have also demonstrated the clear superiority of the intra- versus intermolecular PDDA reaction. In this context, linking the two arylpropiol esters via a subaric acide linker, in the para position, was found to be particularly efficient. If asymmetrically substituted diaryl suberates, in which one of the terminal ester substituents has been replaced by a trimethylsilyl group or a hydrogen atom, are used, these systems undergo regioselective cyclization and naphthalenophanes with a methyl ester in the 3-position are obtained as the main product. With the help of extensive experiments on the functionalization of the 4-position, it was also shown that the substitution of the nucleophilic cycloallen intermediates, during the PDDA reaction, is generally possible by the addition of N-halogen succinimides. Considering the low yields, these intermolecular interception reactions, however, have no preparative utility for the total syntheses of lignans. With the aim of optimizing the general photochemical reaction conditions, the triplet-sensitized PDDA reaction was presented for the first time. The use of xanthone as a sensitizer enabled the use of more efficient UVA light sources, minimizing the risk of photodecomposition due to overirradiation. Compared to direct excitation with UVB radiation, yields were significantly increased with indirect excitation by a photocatalyst. The basic findings and the developed synthesis strategies of this work, may contribute to the future development of new pharmacologically interesting lignans. (1) So far, only the semisynthetic preparation of noralashinol C starting from hydroxymatairesinol is is known from the literature. KW - Totalsynthese KW - Arylnaphthalen-Lignane KW - Photo-Dehydro-Diels-Alder-Reaktion KW - Arylnaphthalene lignans KW - Photo-Dehydro-Diels-Alder reaction KW - total synthesis Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-593065 ER - TY - THES A1 - Henschel, Cristiane T1 - Thermoresponsive polymers with co-nonsolvency behavior T1 - Thermoresponsive Polymere mit "Co-Nonsolvency" Verhalten N2 - Despite the popularity of thermoresponsive polymers, much is still unknown about their behavior, how it is triggered, and what factors influence it, hindering the full exploitation of their potential. One particularly puzzling phenomenon is called co-nonsolvency, in which a polymer is soluble in two individual solvents, but counter-intuitively becomes insoluble in mixtures of both. Despite the innumerous potential applications of such systems, including actuators, viscosity regulators and as carrier structures, this field has not yet been extensively studied apart from the classical example of poly(N isopropyl acrylamide) (PNIPAM) in mixtures of water and methanol. Therefore, this thesis focuses on evaluating how changes in the chemical structure of the polymers impact the thermoresponsive, aggregation and co-nonsolvency behaviors of both homopolymers and amphiphilic block copolymers. Within this scope, both the synthesis of the polymers and their characterization in solution is investigated. Homopolymers were synthesized by conventional free radical polymerization, whereas block copolymers were synthesized by consecutive reversible addition fragmentation chain transfer (RAFT) polymerizations. The synthesis of the monomers N isopropyl methacrylamide (NIPMAM) and N vinyl isobutyramide (NVIBAM), as well as a few chain transfer agents is also covered. Through turbidimetry measurements, the thermoresponsive and co-nonsolvency behavior of PNIPMAM and PNVIBAM homopolymers is then compared to the well-known PNIPAM, in aqueous solutions with 9 different organic co-solvents. Additionally, the effects of end-groups, molar mass, and concentration are investigated. Despite the similarity of their chemical structures, the 3 homopolymers show significant differences in transition temperatures and some divergences in their co-nonsolvency behavior. More complex systems are also evaluated, namely amphiphilic di- and triblock copolymers of PNIPAM and PNIPMAM with polystyrene and poly(methyl methacrylate) hydrophobic blocks. Dynamic light scattering is used to evaluate their aggregation behavior in aqueous and mixed aqueous solutions, and how it is affected by the chemical structure of the blocks, the chain architecture, presence of cosolvents and polymer concentration. The results obtained shed light into the thermoresponsive, co-nonsolvency and aggregation behavior of these polymers in solution, providing valuable information for the design of systems with a desired aggregation behavior, and that generate targeted responses to temperature and solvent mixture changes. N2 - Trotz der Popularität thermoresponsiver Polymere ist noch vieles über ihr Verhalten, sowie dessen Auslöser und Einflüsse darauf unbekannt, was die volle Nutzung ihres Potenzials behindert. Ein besonders ungewöhnliches Phänomen ist die so genannte Co-Nonsolvency, bei der ein Polymer in zwei reinen Lösungsmitteln löslich ist, aber in Mischungen aus beiden unlöslich wird. Trotz der zahlreichen potenziellen Anwendungen solcher Systeme, wie z.B. Aktuatoren, Viskositätsregulatoren und als Transportmedien, ist dieses Feld, abgesehen vom klassischen Beispiel von Poly(N isopropylacrylamid) (PNIPAM) in Mischungen aus Wasser und Methanol, bisher nicht umfassend untersucht worden. Diese Arbeit untersucht daher, welche Auswirkungen die chemische Struktur der Polymere auf das thermoresponsive, Aggregations- und Co-Nonsolvency Verhalten sowohl von Homopolymeren als auch von amphiphilen Blockcopolymeren hat. Dazu wurden sowohl die Synthese der Polymere als auch deren Verhalten in Lösung untersucht. Die Homopolymere wurden durch konventionelle radikalische Polymerisation hergestellt, wogegen die Blockcopolymere durch konsekutive Reversible Addition Fragmentation Chain Transfer Polymerisationen (RAFT) synthetisiert wurden. Die Synthese der Monomere N-Isopropylmethacrylamid (NIPMAM) und N Vinylisobutyramid (NVIBAM) sowie einiger Kettenüberträger wird ebenfalls beschrieben. Mittels Trübungs-Messungen wird das thermoresponsive und Co-Nonsolvency Verhalten von PNIPMAM- und PNVIBAM-Homopolymeren mit dem bekannten PNIPAM in wässrigen Lösungen mit 9 verschiedenen organischen Co-Lösungsmitteln verglichen. Außerdem werden die Auswirkungen der Endgruppen, der Molmasse und der Konzentration der Polymere diskutiert. Trotz der Ähnlichkeit ihrer chemischen Strukturen zeigen die drei Homopolymere signifikante Unterschiede bei den Übergangstemperaturen und einige Divergenzen in ihrem Co-Nonsolvency Verhalten. Es wurden auch komplexere Systeme untersucht, nämlich amphiphile Di- und Triblock-Copolymere von PNIPAM und PNIPMAM mit hydrophoben Blöcken aus Polystyrol und Polymethylmethacrylat. Mittels dynamischer Lichtstreuung wird ihr Aggregationsverhalten in wässrigen und gemischten wässrigen Lösungen bewertet und untersucht, wie es von der chemischen Struktur der Blöcke, der Kettenarchitektur, den Co-Lösungsmitteln und der Polymerkonzentration beeinflusst wird. Die Ergebnisse dokumentieren das thermoresponsive, Co-Nonsolvency und Aggregationsverhalten dieser Polymere in Lösung und liefern wertvolle Informationen für die Entwicklung von Systemen mit einem gewünschten Aggregationsverhalten, die gezielt auf Temperatur- und Lösungsmittelgemischänderungen reagieren. KW - thermoresponsive polymer KW - co-nonsolvency KW - amphiphilic block copolymer KW - poly(N-isopropyl acrylamide) KW - poly(N-isopropyl methacrylamide) KW - poly(N-vinyl isobutyramide) KW - lower critical solution temperature KW - phase transition KW - amphiphile Blockcopolymere KW - Co-Nonsolvency KW - untere kritische Lösungstemperatur KW - Phasenübergang KW - Poly(N-Isopropylacrylamid) KW - Poly(N-Isopropylmethacrylamid) KW - Poly(N-Vinylisobutyramid) KW - thermoresponsive Polymere Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-577161 ER - TY - THES A1 - Kim, Jiyong T1 - Synthesis of InP quantum dots and their applications N2 - Technologically important, environmentally friendly InP quantum dots (QDs) typically used as green and red emitters in display devices can achieve exceptional photoluminescence quantum yields (PL QYs) of near-unity (95-100%) when the-state-of-the-art core/shell heterostructure of the ZnSe inner/ZnS outer shell is elaborately applied. Nevertheless, it has only led to a few industrial applications as QD liquid crystal display (QD–LCD) which is applied to blue backlight units, even though QDs has a lot of possibilities that able to realize industrially feasible applications, such as QD light-emitting diodes (QD‒LEDs) and luminescence solar concentrator (LSC), due to their functionalizable characteristics. Before introducing the main research, the theoretical basis and fundamentals of QDs are described in detail on the basis of the quantum mechanics and experimental synthetic results, where a concept of QD and colloidal QD, a type-I core/shell structure, a transition metal doped semiconductor QDs, the surface chemistry of QD, and their applications (LSC, QD‒LEDs, and EHD jet printing) are sequentially elucidated for better understanding. This doctoral thesis mainly focused on the connectivity between QD materials and QD devices, based on the synthesis of InP QDs that are composed of inorganic core (core/shell heterostructure) and organic shell (surface ligands on the QD surface). In particular, as for the former one (core/shell heterostructure), the ZnCuInS mid-shell as an intermediate layer is newly introduced between a Cu-doped InP core and a ZnS shell for LSC devices. As for the latter one (surface ligands), the ligand effect by 1-octanethiol and chloride ion are investigated for the device stability in QD‒LEDs and the printability of electro-hydrodynamic (EHD) jet printing system, in which this research explores the behavior of surface ligands, based on proton transfer mechanism on the QD surface. Chapter 3 demonstrates the synthesis of strain-engineered highly emissive Cu:InP/Zn–Cu–In–S (ZCIS)/ZnS core/shell/shell heterostructure QDs via a one-pot approach. When this unconventional combination of a ZCIS/ZnS double shelling scheme is introduced to a series of Cu:InP cores with different sizes, the resulting Cu:InP/ZCIS/ZnS QDs with a tunable near-IR PL range of 694–850 nm yield the highest-ever PL QYs of 71.5–82.4%. These outcomes strongly point to the efficacy of the ZCIS interlayer, which makes the core/shell interfacial strain effectively alleviated, toward high emissivity. The presence of such an intermediate ZCIS layer is further examined by comparative size, structural, and compositional analyses. The end of this chapter briefly introduces the research related to the LSC devices, fabricated from Cu:InP/ZCIS/ZnS QDs, currently in progress. Chapter 4 mainly deals with ligand effect in 1-octanethiol passivation of InP/ZnSe/ZnS QDs in terms of incomplete surface passivation during synthesis. This chapter demonstrates the lack of anionic carboxylate ligands on the surface of InP/ZnSe/ZnS quantum dots (QDs), where zinc carboxylate ligands can be converted to carboxylic acid or carboxylate ligands via proton transfer by 1-octanethiol. The as-synthesized QDs initially have an under-coordinated vacancy surface, which is passivated by solvent ligands such as ethanol and acetone. Upon exposure of 1-octanethiol to the QD surface, 1-octanthiol effectively induces the surface binding of anionic carboxylate ligands (derived from zinc carboxylate ligands) by proton transfer, which consequently exchanges ethanol and acetone ligands that bound on the incomplete QD surface. The systematic chemical analyses, such as thermogravimetric analysis‒mass spectrometry and proton nuclear magnetic resonance spectroscopy, directly show the interplay of surface ligands, and it associates with QD light-emitting diodes (QD‒LEDs). Chapter 5 shows the relation between material stability of QDs and device stability of QD‒LEDs through the investigation of surface chemistry and shell thickness. In typical III–V colloidal InP quantum dots (QDs), an inorganic ZnS outermost shell is used to provide stability when overcoated onto the InP core. However, this work presents a faster photo-degradation of InP/ZnSe/ZnS QDs with a thicker ZnS shell than that with a thin ZnS shell when 1-octanethiol was applied as a sulfur source to form ZnS outmost shell. Herein, 1-octanethiol induces the form of weakly-bound carboxylate ligand via proton transfer on the QD surface, resulting in a faster degradation at UV light even though a thicker ZnS shell was formed onto InP/ZnSe QDs. Detailed insight into surface chemistry was obtained from proton nuclear magnetic resonance spectroscopy and thermogravimetric analysis–mass spectrometry. However, the lifetimes of the electroluminescence devices fabricated from InP/ZnSe/ZnS QDs with a thick or a thin ZnS shell show surprisingly the opposite result to the material stability of QDs, where the QD light-emitting diodes (QD‒LEDs) with a thick ZnS shelled QDs maintained its luminance more stable than that with a thin ZnS shelled QDs. This study elucidates the degradation mechanism of the QDs and the QD light-emitting diodes based on the results and discuss why the material stability of QDs is different from the lifetime of QD‒LEDs. Chapter 6 suggests a method how to improve a printability of EHD jet printing when QD materials are applied to QD ink formulation, where this work introduces the application of GaP mid-shelled InP QDs as a role of surface charge in EHD jet printing technique. In general, GaP intermediate shell has been introduced in III–V colloidal InP quantum dots (QDs) to enhance their thermal stability and quantum efficiency in the case of type-I core/shell/shell heterostructure InP/GaP/ZnSeS QDs. Herein, these highly luminescent InP/GaP/ZnSeS QDs were synthesized and applied to EHD jet printing, by which this study demonstrates that unreacted Ga and Cl ions on the QD surface induce the operating voltage of cone jet and cone jet formation to be reduced and stabilized, respectively. This result indicates GaP intermediate shell not only improves PL QY and thermal stability of InP QDs but also adjusts the critical flow rate required for cone-jet formation. In other words, surface charges of quantum dots can have a significant role in forming cone apex in the EHD capillary nozzle. For an industrially convenient validation of surface charges on the QD surface, Zeta potential analyses of QD solutions as a simple method were performed, as well as inductively coupled plasma optical emission spectrometry (ICP-OES) for a composition of elements. Beyond the generation of highly emissive InP QDs with narrow FWHM, these studies talk about the connection between QD material and QD devices not only to make it a vital jumping-off point for industrially feasible applications but also to reveal from chemical and physical standpoints the origin that obstructs the improvement of device performance experimentally and theoretically. N2 - Umweltfreundliche InP Quantenpunkte (QDs) sind technologisch relevant und werden typischerweise als grüne und rote Emitter in Bildschirmen verwendet. Nach dem Stand der Technik kann eine sorgfältig hergestellte Kern-Schale-Heterostruktur (ZnSe innen/ZnS außen) zu außergewöhnlich hohen Photolumineszenz-Quantenausbeuten (PL-QYs) von nahezu Eins (95 - 100 %) führen. Dennoch gibt es bisher nur einige wenige industrielle Anwendungen wie QD-Flüssigkristall-Bildschirme (liquid crystal display, QD-LCD), in denen die Anregung durch eine blaue Hintergrundbeleuchtung realisiert wird. Dabei haben QDs aufgrund ihrer Modifizierbarkeit noch viele weitere industrielle Einsatzmöglichkeiten, beispielsweise QD basierte lichtemittierende Dioden (QD-LEDs) und lumineszierende Solarkollektoren (luminescence solar concentrator, LSC). Vor dem Hauptteil werden in den Kapiteln 1 und 2 die Grundlagen von QDs und die theoretischen Grundlagen basierend auf quantenmechanischer Beschreibung und experimentellen Ergebnissen eingeführt. Zum besseren Verständnis werden: das Konzept der QDs, kolloidale QDs, Kern-Schale-Strukturen vom Typ I, mit Übergangsmetallen dotierte Halbleiter-QDs, die Oberflächenchemie von QDs und ihre Anwendungen (LSC, QD-LEDs und electrohydrodynamic EHD-Jet-Printing), nacheinander eingeführt. Der Schwerpunkt dieser Doktorarbeit liegt hauptsächlich auf der Kombination von QD-Materialien und QD-Bauelementen, basierend auf der Synthese von InP QDs mit einem anorganischen Kern (Kern-Schale-Heterostruktur) und einer organischen Hülle (Oberflächenliganden auf der QD-Oberfläche). In die Kern-Schale-Heterostruktur wird eine ZnCuInS-Mittelschale als Zwischenschicht zwischen einem Cu-dotierten InP Kern und einer ZnS-Schale für LSC-Bauelemente neu eingeführt. Bei den Oberflächenliganden wird der Ligandeneffekt von 1-Oktanthiol und Chloridionen auf die Stabilität von QD-LEDs und die Druckbarkeit mit EHD-Jet-Printing hin untersucht. Dabei erhält der Protonentransfermechanismus auf der QD-Oberfläche ein besonderes Augenmerk. In Kapitel 3 wird die Eintopfsynthese von hocheffizient emittierenden QDs mit einer Cu:InP/Zn-Cu-In-S (ZCIS)/ZnS Kern/Schale/Schale-Heterostruktur beschrieben. Wenn diese neuartige Kombination einer ZCIS/ZnS-Doppelschalenstruktur mit eine Reihe von Cu:InP-Kerne mit unterschiedlichen Größen kombiniert wird, ergeben die daraus entstehenden Cu:InP/ZCIS/ZnS-QDs die bisher höchsten publizierten PL-QYs von 71,5 – 82,4 % im nahen IR-Bereich von 694 – 850 nm mit einstellbarer PL Wellenlänge. Diese Ergebnisse weisen auf die Wirksamkeit der ZCIS-Zwischenschicht hin, welche die Grenzflächenspannung zwischen Kern und Schale effektiv mildert und damit zu einem solch hohen Emissionsvermögen führt. Diese ZCIS-Zwischenschicht wird durch vergleichende Größen-, Struktur- und Zusammensetzungsanalysen weiter untersucht. Am Ende des Kapitels wird der aktuellen Stand der Forschung auf dem Gebiet der LSC-Bauelemente aus solchen Cu:InP/ZCIS/ZnS-QDs vorgestellt. Kapitel 4 befasst sich hauptsächlich mit dem Ligandeneffekt bei der Passivierung mit 1-Oktanthiol von InP/ZnSe/ZnS-QDs im Hinblick auf die unvollständige Oberflächenpassivierung während der Synthese. Es fehlen anionischen Carboxylat-Liganden auf der InP/ZnSe/ZnS-Oberfläche der QDs, an denen Zink Carboxylat Liganden durch Protonentransfer vom 1-Oktanthiol in Carbonsäure-Liganden umgewandelt werden könnten. Die so synthetisierten QDs haben zunächst eine unterkoordinierte Oberfläche mit Leerstellen, die durch Lösungsmittel-Liganden wie Ethanol oder Aceton passiviert werden. Wenn 1-Octanthiol an die QD-Oberfläche bindet bewirkt der Protonentransfer die Bindung von Carboxylat-Liganden (aus Zink-Carboxylat) an die Oberfläche, wobei Ethanol- oder Aceton-Liganden ausgetauscht werden. Systematische Analysen wie Thermogravimetrie (thermogravimetric analysis TGA), Massenspektrometrie (MS) und Protonen-Kernmagnetresonanz (proton nuclear magnetic resonance 1H-NMR) zeigen direkt den Zusammenhang zwischen Oberflächenliganden und QD-LEDs. Kapitel 5 zeigt den Zusammenhang zwischen der Materialstabilität von QDs und der Bauteilstabilität von QD-LEDs durch Untersuchung der Oberflächenchemie und der Schalendicke. In typischen kolloidalen III-V-InP-QDs wird eine anorganische ZnS-Außenhülle auf den InP Kern aufgetragen, um Stabilität zu gewährleisten. In dieser Arbeit wird jedoch eine schnellere Photodegradation von InP/ZnSe/ZnS-QDs mit einer dickeren statt einer dünneren ZnS-Schale gezeigt, wenn 1-Oktanthiol als Schwefelquelle zur Bildung der äußersten ZnS-Schale verwendet wurde. 1-Oktanthiol induziert die Bildung eines schwach gebundenen Carboxylatliganden durch Protonentransfer auf der QD-Oberfläche, was zu einem schnelleren Abbau unter UV-Licht trotz dickerer ZnS-Schale führt. Detailliertere Einblicke in die Oberflächenchemie werden durch 1H-NMR, TGA und MS gewonnen. Überraschenderweise zeigen jedoch die Lebensdauern der aus InP/ZnSe/ZnS-QDs mit dicken oder dünnen ZnS-Hüllen hergestellten EL-Bauelemente eine gegenteilige Stabilität: Die QD-LEDs mit QDs mit dicker ZnS-Hülle haben eine längere Lebensdauer, als jene mit dünner ZnS-Hülle. Es wird der Degradationsmechanismus der QDs und der QD-Leuchtdioden anhand der Ergebnisse erläutert und der Effekt auf die unterschiedlichen Lebensdauern von Material und Bauteil diskutiert. In Kapitel 6 wird eine Methode vorgeschlagen, wie die Druckbarkeit von QD-Tintenformulierungen beim EHD-Jet-Druck über die QD-Materialien verbessert werden kann. Dazu werden InP-QDs mit GaP-Zwischenschalen erweitert, um die Oberflächenladung zu beeinflussen. Darüber hinaus verbessern GaP-Zwischenschalen in III-V kolloidalen InP-QDs deren thermische Stabilität und PL-QY im Falle von Typ-I-Kern/Schale/Schale-Heterostrukturen (InP/GaP/ZnSeS-QDs). Diese stark lumineszierenden InP/GaP/ZnSeS-QDs wurden synthetisiert und für den EHD-Jet-Druck verwendet. Nicht umgesetzte Ga und Cl-Ionen auf der QD-Oberfläche reduzieren die benötigte Betriebsspannung zur Ausbildung eines Taylor-Kegels und eines stabilen Tinten-Jets. Dieses Ergebnis deutet darauf hin, dass die Oberflächenladungen der Quantenpunkte eine wichtige Rolle bei der Ausbildung des Taylor-Kegels spielen. Mittels Zeta-Potenzial-Messung von QD-Tinten wurde eine industriell erprobte und einfache Methode zur Untersuchung der Oberflächenladungen verwendet. Darüber hinaus wurde optische Emissionsspektrometrie mit induktiv gekoppeltem Plasma (inductively coupled plasma-atomic emission spectroscopy ICP-OES) zur Bestimmung der Elementzusammensetzung durchgeführt. Diese Dissertation beschäftigt sich sowohl mit der Synthese von hocheffizienten InP QDs mit schmalbandiger Emission (full width at half maximum FWHM), als auch den Zusammenhängen zwischen QD-Material und QD-Bauelementen. Die Ergebnisse sind einerseits relevant für die breitere industrielle Anwendung dieser Materialien und andererseits für ein tieferes chemisch-physikalisches, theoretisches und experimentelles Verständnis der Prozesse, die zu langlebigen und stabilen Bauelementen führen. KW - colloidal quantum dot KW - Cu doped InP KW - surface chemistry KW - QD stability KW - QD device KW - kolloidaler Quantenpunkt KW - Cu-dotiertes InP KW - Oberflächenchemie KW - QD-Stabilität KW - QD-Gerät Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-585351 ER - TY - THES A1 - Ihlenburg, Ramona T1 - Sulfobetainhydrogele mit biomedizinischem Anwendungspotential und deren Netzwerkcharakterisierung im Gleichgewichtsquellzustand N2 - In dieser Dissertation konnten erfolgreich mechanisch stabile Hydrogele über eine freie radikalische Polymerisation (FRP) in Wasser synthetisiert werden. Dabei diente vor allem das Sulfobetain SPE als Monomer. Dieses wurde mit dem über eine nukleophile Substitution erster bzw. zweiter Ordnung hergestellten Vernetzer TMBEMPA/Br umgesetzt. Die entstandenen Netzwerke wurden im Gleichgewichtsquellzustand im Wesentlichen mittels Niederfeld-Kernresonanzspektroskopie, Röntgenkleinwinkelstreuung (SAXS), Rasterelektronenmikroskopie mit Tieftemperaturtechnik (Kryo-REM), dynamisch-mechanische Analyse (DMA), Rheologie, thermogravimetrische Analyse (TGA) und dynamische Differenzkalorimetrie (DSC) analysiert. Das hierarchisch aufgebaute Netzwerk wurde anschließend für die matrixgesteuerten Mineralisation von Calciumphosphat und –carbonat genutzt. Über das alternierende Eintauchverfahren (engl. „alternate soaking method“) und der Variation von Mineralisationsparametern, wie pH-Wert, Konzentration c und Temperatur T konnten dann verschiedene Modifikationen des Calciumphosphats generiert werden. Das entstandene Hybridmaterial wurde qualitativ mittels Röntgenpulverdiffraktometrie (XRD), abgeschwächte Totalreflexion–fouriertransformierte Infrarot Spektroskopie (ATR-FTIR), Raman-Spektroskopie, Rasterelektronenmikroskopie (REM) mit energiedispersiver Röntgenspektroskopie (EDXS) und optischer Mikroskopie (OM) als auch quantitative mittels Gravimetrie und TGA analysiert. Für die potentielle Verwendung in der Medizintechnik, z.B. als Implantatmaterial, ist die grundlegende Einschätzung der Wechselwirkung zwischen Hydrogel bzw. Hybridmaterial und verschiedener Zelltypen unerlässlich. Dazu wurden verschiedene Zelltypen, wie Einzeller, Bakterien und adulte Stammzellen verwendet. Die Wechselwirkung mit Peptidsequenzen von Phagen komplettiert das biologische Unterkapitel. Hydrogele sind mannigfaltig einsetzbar. Diese Arbeit fasst daher weitere Projektperspektiven, auch außerhalb des biomedizinischem Anwendungsspektrums, auf. So konnten erste Ansätze zur serienmäßige bzw. maßgeschneiderte Produktion über das „Inkjet“ Verfahren erreicht werden. Um dies ermöglichen zu können wurden erfolgreich weitere Synthesestrategien, wie die Photopolymerisation und die redoxinitiierte Polymerisation, ausgenutzt. Auch die Eignung als Filtermaterial oder Superabsorber wurde analysiert. N2 - In this current thesis, mechanically stable hydrogels were successfully synthesized via free radical polymerization (FRP) in water. In particular, the sulfobetaine SPE served as a monomer. This was reacted with the crosslinker TMBEMPA/Br prepared via first- and second-order nucleophilic substitution, respectively. The resulting networks were analyzed in the equilibrium swelling state mainly by low-field nuclear magnetic resonance spectroscopy, small-angle X-ray scattering (SAXS), scanning electron microscopy with cryogenic technique (cryo-REM), dynamic mechanical analysis (DMA), rheology, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The hierarchical network was then used for matrix-controlled mineralization of calcium phosphate and carbonate. Using the alternate soaking method and varying mineralization parameters such as pH, concentration c and temperature T, different modifications of calcium phosphate could be generated. The resulting hybrid material was analyzed qualitatively by X-ray powder diffraction (XRD), attenuated total reflection Fourier transformed infrared spectroscopy (ATR-FTIR), Raman spectroscopy, scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDXS) and optical microscopy (OM) as well as quantitatively by gravimetry and TGA. For the potential use in medical technology, e.g. as implant material, the basic assessment of the interaction between hydrogel or hybrid material and different cell types is essential. For this purpose, different cell types, such as amoeba, bacteria and adult stem cells, were used. The interaction with peptide sequences of phages completes the biological subchapter. Hydrogels can be used in many different ways. This thesis therefore includes further project perspectives, also outside the biomedical application spectrum. Thus, first approaches to serial or customized production via the "inkjet" process could be achieved. To make this possible, other synthesis strategies such as photopolymerization and redox-initiated polymerization were successfully exploited. The suitability as filter material or superabsorbent was also analyzed. KW - Hydrogel KW - Calciumphosphat KW - Mineralisation KW - hydrogel KW - calcium phosphate KW - mineralization Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-607093 ER - TY - THES A1 - Saatchi, Mersa T1 - Study on manufacturing of multifunctional bilayer systems N2 - Layered structures are ubiquitous in nature and industrial products, in which individual layers could have different mechanical/thermal properties and functions independently contributing to the performance of the whole layered structure for their relevant application. Tuning each layer affects the performance of the whole layered system. Pores are utilized in various disciplines, where low density, but large surfaces are demanded. Besides, open and interconnected pores would act as a transferring channel for guest chemical molecules. The shape of pores influences compression behavior of the material. Moreover, introducing pores decreases the density and subsequently the mechanical strength. To maintain defined mechanical strength under various stress, porous structure can be reinforced by adding reinforcement agent such as fiber, filler or layered structure to bear the mechanical stress on demanded application. In this context, this thesis aimed to generate new functions in bilayer systems by combining layers having different moduli and/or porosity, and to develop suitable processing techniques to access these structures. Manufacturing processes of layered structures employ often organic solvents mostly causing environmental pollution. In this regard, the studied bilayer structures here were manufactured by processes free of organic solvents. In this thesis, three bilayer systems were studied to answer the individual questions. First, while various methods of introducing pores in melt-phase are reported for one-layer constructs with simple geometry, can such methods be applied to a bilayer structure, giving two porous layers? This was addressed with Bilayer System 1. Two porous layers were obtained from melt-blending of two different polyurethanes (PU) and polyvinyl alcohol (PVA) in a co-continuous phase followed by sequential injection molding and leaching the PVA phase in deionized water. A porosity of 50 ± 5% with a high interconnectivity was obtained, in which the pore sizes in both layers ranged from 1 µm to 100 µm with an average of 22 µm in both layers. The obtained pores were tailored by applying an annealing treatment at relevant high temperatures of 110 °C and 130 °C, which allowed the porosity to be kept constant. The disadvantage of this system is that a maximum of 50% porosity could be reached and removal of leaching material in the weld line section of both layers is not guaranteed. Such a construct serves as a model for bilayer porous structure for determining structure-property relationships with respect to the pore size, porosity and mechanical properties of each layer. This fabrication method is also applicable to complex geometries by designing a relevant mold for injection molding. Secondly, utilizing scCO2 foaming process at elevated temperature and pressure is considered as a green manufacturing process. Employing this method as a post-treatment can alter the history orientation of polymer chains created by previous fabrication methods. Can a bilayer structure be fabricated by a combination of sequential injection molding and scCO2 foaming process, in which a porous layer is supported by a compact layer? Such a construct (Bilayer System 2) was generated by sequential injection molding of a PCL (Tm ≈ 58 °C) layer and a PLLA (Tg ≈ 58 °C) layer. Soaking this structure in the autoclave with scCO2 at T = 45 °C and P = 100 bar led to the selective foaming of PCL with a porosity of 80%, while the PLA layer was kept compact. The scCO2 autoclave led to the formation of a porous core and skin layer of the PCL, however, the degree of crystallinity of PLLA layer increased from 0 to 50% at the defined temperature and pressure. The microcellular structure of PCL as well as the degree of crystallinity of PLLA were controlled by increasing soaking time. Thirdly, wrinkles on surfaces in micro/nano scale alter the properties, which are surface-related. Wrinkles are formed on a surface of a bilayer structure having a compliant substrate and a stiff thin film. However, the reported wrinkles were not reversible. Moreover, dynamic wrinkles in nano and micro scale have numerous examples in nature such as gecko foot hair offering reversible adhesion and an ability of lotus leaves for self-cleaning altering hydrophobicity of the surface. It was envisioned to imitate this biomimetic function on the bilayer structure, where self-assembly on/off patterns would be realized on the surface of this construct. In summary, developing layered constructs having different properties/functions in the individual layer or exhibiting a new function as the consequence of layered structure can give novel insight for designing layered constructs in various disciplines such as packaging and transport industry, aerospace industry and health technology. N2 - Schichtstrukturen sind in der Natur und in Industrieprodukten allgegenwärtig, wobei die einzelnen Schichten unterschiedliche mechanische/thermische Eigenschaften und Funktionen haben können, die unabhängig voneinander zur Leistungsfähigkeit der gesamten Schichtstruktur für die jeweilige Anwendung beitragen. Die individuelle Abstimmung jeder einzelnen Schicht wirkt sich auf die Leistungsfähigkeit des gesamten Schichtsystems aus. Poren werden in verschiedenen Bereichen eingesetzt, in denen eine geringe Dichte, aber eine große Oberfläche erforderlich ist. Außerdem können offene und miteinander verbundene Poren als Übertragungskanal für chemische Gast-Moleküle dienen. Die Form der Poren beeinflusst das Kompressionsverhalten des Materials. In diesem Zusammenhang zielte diese Arbeit darauf ab, neue Funktionen in zweischichtigen Systemen durch die Kombination von Schichten mit unterschiedlichen Modulen und/oder Porosität zu erzeugen und geeignete Verarbeitungstechniken zu entwickeln, um diese Strukturen zu erreichen. Bei der Herstellung von Schichtstrukturen werden häufig organische Lösungsmittel verwendet, die meist eine Umweltbelastung darstellen. Daher wurden die hier untersuchten Doppelschichtstrukturen mit Verfahren hergestellt, die frei von organischen Lösungsmitteln sind. In dieser Arbeit wurden drei Doppelschichtsysteme untersucht, um die einzelnen Fragen zu beantworten. Erstens: Während verschiedene Methoden zur Einführung von Poren in der Schmelzphase für einschichtige Konstruktionen mit einfacher Geometrie bekannt sind, stellt sich die Frage, ob solche Methoden sich auf eine zweischichtige Struktur anwenden lassen und somit zwei unterschiedlich poröse Schichten ergibt? Dies wurde mit dem Zweischichtsystem 1 untersucht. Zwei poröse Schichten wurden durch das Mischen in der Schmelze von zwei verschiedenen Polyurethanen (PU) und Polyvinylalkohol (PVA) in einer co-kontinuierlichen Phase erhalten. Es folgte sequentielles Spritzgießen und das Entfernen der PVA-Phase durch „Leaching“ in entionisiertem Wasser. Es wurde eine Porosität von 50 ± 5 % mit einer hohen Interkonnektivität erzielt, wobei die Porengrößen in beiden Schichten zwischen 1 µm und 100 µm lagen, mit einem Durchschnittswert von 22 µm in beiden Schichten. Diese Herstellungsmethode ist auch auf komplexe Geometrien anwendbar, es muss lediglich eine entsprechende Form für das Spritzgießen entworfen werden. Zweitens: die Verwendung des scCO2-Schäumungsverfahrens bei erhöhter Temperatur und erhöhtem Druck wird als umweltfreundlicher Herstellungsprozess betrachtet. Durch den Einsatz dieser Methode als Nachbehandlung kann die Historie der Ausrichtung der Polymerketten, die durch frühere Herstellungsmethoden entstanden ist, verändert werden. Kann eine zweischichtige Struktur durch eine Kombination aus sequentiellem Spritzgießen und scCO2-Schäumverfahren hergestellt werden, bei der eine poröse Schicht von einer kompakten Schicht getragen wird? Ein solches Konstrukt (Bilayer System 2) wurde durch sequentielles Spritzgießen einer PCL-Schicht (Tm ≈ 58 °C) und einer PLLA-Schicht (Tg ≈ 58 °C) erzeugt. Das Einweichen dieser Struktur in scCO2 im Autoklaven bei T = 45 °C und P = 100 bar führte zum selektiven Aufschäumen von PCL mit einer Porosität von 80%, während die PLA-Schicht unverschäumt blieb. Die Behandlung im scCO2-Autoklav führte zur Bildung einer porösen Kern- und Hautschicht des PCL, während der Kristallinitätsgrad der PLLA-Schicht bei der definierten Temperatur und dem definierten Druck von 0 auf 50 % anstieg. Die mikrozelluläre Struktur von PCL sowie der Kristallinitätsgrad von PLLA wurden durch die Erhöhung der Einweichzeit gesteuert. Drittens verändern Falten auf Oberflächen im Mikro-/Nanomaßstab die Eigenschaften, die mit der Oberfläche zusammenhängen. Falten bilden sich auf der Oberfläche einer zweischichtigen Struktur mit einem nachgiebigen Substrat und einem steifen dünnen Film. Die Falten waren jedoch nicht reversibel. Darüber hinaus gibt es in der Natur zahlreiche Beispiele für dynamische Falten im Nano- und Mikromaßstab, wie z. B. Gecko-Fußhaare, die eine reversible Adhäsion ermöglichen, und die Fähigkeit von Lotusblättern, sich selbst zu reinigen, indem sie die Hydrophobizität der Oberfläche verändern. Diese biomimetische Funktion sollte auf der Doppelschichtstruktur nachgeahmt werden, wobei auf der Oberfläche dieses Konstrukts selbstorganisierende On/Off-Muster realisiert werden sollten. Zusammenfassend kann gesagt werden, dass die Entwicklung geschichteter Konstrukte mit unterschiedlichen Eigenschaften/Funktionen in den einzelnen Schichten oder mit einer neuen Funktion als Folge der geschichteten Struktur neue Erkenntnisse für den Entwurf geschichteter Konstrukte in verschiedenen Disziplinen wie der Verpackungs- und Transportindustrie, der Luft- und Raumfahrtindustrie und der Gesundheitstechnologie liefern kann. T2 - Studie zur Herstellung multifunktionaler Doppelschichtsysteme KW - bilayer system KW - biomaterials KW - wrinkles KW - polymer KW - injection molding KW - Doppelschichtstruktur KW - Biomaterialien KW - poröse Struktur KW - Falten KW - Spritzgießen Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-601968 ER - TY - THES A1 - Hildebrandt, Jana T1 - Studies on nanoplastics for the preparation of reference materials T1 - Untersuchungen an Nanoplastik für die Herstellung von Referenzmaterialien N2 - The present work focuses on the preparation and characterisation of various nanoplastic reference material candidates. Nanoplastics are plastic particles in a size range of 1 − 1000 nm. The term has emerged in recent years as a distinction from the larger microplastic (1 − 1000 μm). Since the properties of the two plastic particles differ significantly due to their size, it is important to have nanoplastic reference material. This was produced for the polymer types polypropylene (PP) and polyethylene (PE) as well as poly(lactic acid) (PLA). A top-down method was used to produce the nanoplastic for the polyolefins PP and PE (Section 3.1). The material was crushed in acetone using an Ultra-Turrax disperser and then transferred to water. This process produces reproducible results when repeated, making it suitable for the production of a reference material candidate. The resulting dispersions were investigated using dynamic and electrophoretic light scattering. The dispersion of PP particles gave a mean hydrodynamic diameter Dh = 180.5±5.8 nm with a PDI = 0.08±0.02 and a zeta potential ζ = −43.0 ± 2.0 mV. For the PE particles, a diameter Dh = 344.5 ± 34.6 nm, with a PDI = 0.39 ± 0.04 and a zeta potential of ζ = −40.0 ± 4.2 mV was measured. This means that both dispersions are nanoplastics, as the particles are < 1000 nm. Furthermore, the starting material of these polyolefin particles was mixed with a gold salt and thereby the nanoplastic production was repeated in order to obtain nanoplastic particles doped with gold, which should simplify the detection of the particles. In addition to the top-down approach, a bottom-up method was chosen for the PLA (Section 3.2). Here, the polymer was first dissolved in THF and stabilised with a surfactant. Then water was added and THF evaporated, leaving an aqueous PLA dispersion. This experiment was also investigated using dynamic light scattering and, when repeated, yielded reproducible results, i. e. an average hydrodynamic diameter of Dh = 89.2 ± 3.0 nm. Since the mass concentration of PLA in the dispersion is known due to the production method, a Python notebook was tested for these samples to calculate the number and mass concentration of nano(plastic) particles using the MALS results. Similar to the plastic produced in Section 3.1, gold was also incorporated into the particle, which was achieved by adding a dispersion of gold clusters with a diameter of D = 1.15 nm in an ionic liquid (IL) in the production process. Here, the preparation of the gold clusters in the ionic liquid 1-ethyl-3-methylimidazolium dicyanamide ([Emim][DCA]) represented the first use of an IL both as a reducing agent for gold and as a solvent for the gold clusters. Two volumes of gold cluster dispersion were added during the PLA particle synthesis. The addition of the gold clusters leads to much larger particles. The nanoPLA with 0.8% Au has a diameter of Dh = 198.0 ± 10.8 nm and the nanoPLA with 4.9% Au has a diameter of Dh = 259.1 ± 23.7 nm. First investigations by TEM imaging show that the nanoPLA particles form hollow spheres when gold clusters are added. However, the mechanism leading to these structures remains unclear. N2 - Die vorliegende Arbeit beschäftigt sich mit der Herstellung und Charakterisierung verschiedener Nanoplastikreferenzmaterialkandidaten. Um Nanoplastik handelt es sich bei Plastikpartikeln in einem Größenbereich von 1 − 1000 nm. Der Begriff hat sich in den letzten Jahren als Abgrenzung zu dem größeren Mikroplastik (1 − 1000 μm) herausgebildet. Da sich die Eigenschaften der beiden Plastikpartikel auf Grund ihrer Größe deutlich unterscheiden, ist es wichtig, Nanoplastikreferenzmaterial zur Verfügung zu stellen. Dieses wurde für die Polymertypen Polypropylen (PP) und Polyethylen (PE) sowie Polymilchsäure (PLA) hergestellt. Dabei wurde für die Polyolefine PP und PE eine top-down Methode für die Herstellung des Nanoplastiks angewandt (Abschnitt 3.1). Dazu wurde das Material mithilfe eines Ultra-Turrax Dispergiergeräts in Aceton zerkleinert und danach in Wasser überführt. Dieser Prozess führt bei Wiederholung zu ähnlichen Ergebnissen, was ihn passend für die Herstellung eines Referenzmaterialkandidaten macht. Die entstandenen Dispersionen wurden mit der dynamischen und elektrophoretischen Lichtstreuung untersucht. Die Dispersion von PP-Partikeln ergab einen mittleren hydrodynamischen Durchmesser Dh = 180.5 ± 5.8 nm mit einem PDI = 0.08 ± 0.02 und einem Zetapotential ζ = −43.0 ± 2.0 mV. Bei den PE-Partikeln wurde ein Durchmesser Dh = 344.5 ± 34.6 nm, mit einem PDI = 0.39 ± 0.04 und einem Zetapotential von ζ = −40.0 ± 4.2 mV gemessen. Damit handelt es sich bei beiden Dispersionen um Nanoplastik, da die Partikel < 1000 nm sind. Des Weiteren wurde das Ausgangsmaterial dieser Polyolefinpartikel mit einem Goldsalz versetzt und damit die Nanoplastikherstellung wiederholt, um mit Gold dotierte Nanoplastikpartikel zu erhalten, die die Detektion der Partikel vereinfachen sollen. Neben dem Top-down Ansatz wurde für das PLA eine Bottom-up Methode gewählt (Abschnitt 3.2). Hierbei wurde das Polymer in THF zunächst gelöst und mit einem Tensid stabilisiert. Dann wurde Wasser hinzugegeben und das THF verdampft, sodass eine wässrige PLADispersion übrig blieb. Auch dieses Experiment wurde mithilfe der dynamischen Lichtstreuung untersucht und führte bei Wiederholung zu reproduzierbaren Ergebnissen von einem mittleren hydrodynamischen Durchmesser von Dh = 89.2 ± 3.0 nm. Da durch die Herstellungsweise die Massenkonzentration von PLA in der Dispersion bekannt ist, wurde für diese Proben ein Python Notebook getestet, das die Zahlen- und Massenkonzentration von Nano(plastik)partikeln mithilfe der MALS-Ergebnisse errechnen soll. Ähnlich wie für das in Abschnitt 3.1 hergestellte Plastik wurde auch hier Gold in den Partikel eingearbeitet, was durch die Zugabe einer Dispersion von Goldclustern mit einem Durchmesser von D = 1.15 nm in einer ionischen Flüssigkeit (IL) im Herstellungsprozess gelang. Dabei stellte die Herstellung der Goldcluster in der ionischen Flüssigkeit 1-Ethyl-3-methylimidazolium-dicyanamid ([Emim][DCA]) die erstmalige Verwendung einer IL sowohl als Reduktionsmittel für Gold als auch als Lösungsmittel für die Goldcluster dar. Während der Synthese der PLA-Partikel wurden zwei unterschiedliche Volumina der Goldcluster-Dispersion hinzugefügt. Die Zugabe von Goldclustern führt zu wesentlich größeren Partikeln. Das nanoPLA mit 0.8% Au hat einen Durchmesser von Dh = 198.0 ± 10.8 nm und das nanoPLA mit 4.9% Au hat einen Durchmesser von Dh = 259.1 ± 23.7 nm. Dabei zeigen erste Untersuchungen mittels TEM-Bildgebung, dass die nanoPLA-Partikel Hohlkugeln bilden, wenn Goldcluster hinzugefügt werden. Jedoch ist der Mechanismus, der zu diesen Strukturen führt, noch unklar. KW - nanoplastic KW - Nanoplastik KW - Rerenzmaterial KW - reference material KW - polyolefin KW - Polyolefin KW - Polymilchsäure KW - Poly(lactic acid) Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-617102 ER - TY - THES A1 - Pan, Xuefeng T1 - Soft-template directed functional composite nanomaterials N2 - Soft-template strategy enables the fabrication of composite nanomaterials with desired functionalities and structures. In this thesis, soft templates, including poly(ionic liquid) nanovesicles (PIL NVs), self-assembled polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) particles, and glycopeptide (GP) biomolecules have been applied for the synthesis of versatile composite particles of PILs/Cu, molybdenum disulfide/carbon (MoS2/C), and GP-carbon nanotubes-metal (GP-CNTs-metal) composites, respectively. Subsequently, their possible applications as efficient catalysts in two representative reactions, i.e. CO2 electroreduction (CO2ER) and reduction of 4-nitrophenol (4-NP), have been studied, respectively. In the first work, PIL NVs with a tunable particle size of 50 to 120 nm and a shell thickness of 15 to 60 nm have been prepared via one-step free radical polymerization. By increasing monomer concentration for polymerization, their nanoscopic morphology can evolve from hollow NVs to dense spheres, and finally to directional worms, in which a multi-lamellar packing of PIL chains occurred in all samples. The obtained PIL NVs with varied shell thickness have been in situ functionalized with ultra-small Cu nanoparticles (Cu NPs, 1-3 nm) and subsequently employed as the electrocatalysts for CO2ER. The hollow PILs/Cu composite catalysts exhibit a 2.5-fold enhancement in selectivity towards C1 products compared to the pristine Cu NPs. This enhancement is primarily attributed to the strong electronic interactions between the Cu NPs and the surface functionalities of PIL NVs. This study casts new aspects on using nanostructured PILs as novel electrocatalyst supports in efficient CO2 conversion. In the second work, a novel approach towards fast degradation of 4-NP has been developed using porous MoS2/C particles as catalysts, which integrate the intrinsically catalytic property of MoS2 with its photothermal conversion capability. Various MoS2/C composite particles have been prepared using assembled PS-b-P2VP block copolymer particles as sacrificed soft templates. Intriguingly, the MoS2/C particles exhibit tailored morphologies including pomegranate-like, hollow, and open porous structures. Subsequently, the photothermal conversion performance of these featured particles has been compared under near infrared (NIR) light irradiation. When employing the open porous MoS2/C particles as the catalyst for the reduction of 4-NP, the reaction rate constant has increased by 1.5-fold under light illumination. This catalytic enhancement mainly results from the open porous architecture and photothermal conversion performance of the MoS2 particles. This proposed strategy offers new opportunities for efficient photothermal-assisted catalysis. In the third work, a facile and green approach towards the fabrication of GP-CNTs-metal composites has been proposed, which utilizes a versatile GP biomolecule both as a stabilizer for CNTs in water and as a reducing agent for noble metal ions. The abundant hydrogen bonds in GP molecules bestow the formed GP-CNTs with excellent plasticity, enabling the availability of polymorphic CNTs species ranging from dispersion to viscous paste, gel, and even dough by increasing their concentration. The GP molecules can reduce metal precursors at room temperature without additional reducing agents, enabling the in situ immobilization of metal NPs (e.g. Au, Ag, and Pd) on the CNTs surface. The combination of excellent catalytic property of Pd NPs with photothermal conversion capability of CNTs makes the GP-CNTs-Pd composite a promising catalyst for the efficient degradation of 4-NP. The obtained composite displays a 1.6-fold increase in conversion under NIR light illumination in the reduction of 4-NP, mainly owing to the strong light-to-heat conversion effect of CNTs. Overall, the proposed method opens a new avenue for the synthesis of CNTs composite as a sustainable and versatile catalyst platform. The results presented in the current thesis demonstrate the significance of using soft templates for the synthesis of versatile composites with tailored nanostructure and functionalities. The investigation of these composite nanomaterials in the catalytic reactions reveals their potential in the development of desired catalysts for emerging catalytic processes, e.g. photothermal-assisted catalysis and electrocatalysis. N2 - Die Weiche-Vorlagen-Strategie ermöglicht die Herstellung von zusammengesetzten Nanomaterialien mit gewünschten Funktionalitäten und Strukturen. In dieser Arbeit wurden weiche Vorlagen, darunter Poly(ionische Flüssigkeit) -Nanovesikeln (PIL-NVs), selbstorganisierte Polystyrol-b-Poly(2-Vinylpyridin)-Partikeln (PS-b-P2VP) und Glykopeptid (GP)-Biomoleküle verwendet, um vielseitige Kompositen aus PILs/Cu, Molybdändisulfid/Kohlenstoff (MoS2/C) bzw. GP-Kohlenstoffnanoröhren -Metall (GP- CNTs- Metall) zu synthetisieren. Anschließend wurden ihre möglichen Anwendungen als effiziente Katalysatoren in zwei repräsentativen Reaktionen, d. h. CO2-Elektroreduktion (CO2ER) und Reduktion von 4-Nitrophenol (4-NP), untersucht. Im ersten Abschnitt wurden PIL-NVs mit einer einstellbaren Partikelgröße von 50 bis 120 nm und einer Schalendicke von 15 bis 60 nm durch einstufige radikalische Polymerisation hergestellt. Durch Erhöhung der Monomerkonzentration für die Polymerisation kann sich ihre nanoskopische Morphologie von hohlen NVs zu dichten Kugeln und schließlich zu gerichteten Schnecken entwickeln, wobei in allen Proben eine multilamellare Packung von PIL-Ketten auftritt. Die erhaltenen PIL-NVs mit unterschiedlicher Schalendicke wurden durch ultrakleinen Cu-Nanopartikeln (Cu-NPs, 1-3 nm) funktionalisiert und anschließend als Elektrokatalysatoren für CO 2ER eingesetzt. Die PILs/Cu-Komposit-Elektrokatalysatoren zeigen eine 2,5-fache Steigerung der Selektivität gegenüber C 1-Produkten im Vergleich zu den unbehandelten Cu-NPs. Diese Verbesserung wird in erster Linie auf die starken elektronischen Wechselwirkungen zwischen den Cu-NPs und den Oberflächenfunktionalitäten der PIL -NVs zurückgeführt. Diese Studie wirft neue Aspekte auf die Verwendung nanostrukturierter PILs als neuartige Elektrokatalysatorträger für eine effiziente CO2-Umwandlung. Im zweiten Abschnitt wurde ein neuartiger Ansatz für den schnellen Abbau von 4 -NP entwickelt, bei dem poröse MoS 2/C-Partikeln als Katalysatoren verwendet werden, die die intrinsische katalytische Eigenschaft von MoS2 mit seiner photothermischen Umwandlungsfähigkeit verbinden. Verschiedene MoS2/C-Verbundpartikeln wurden unter Verwendung von zusammengesetzten PS-b-P2VP Blockcopolymerpartikeln als geopferte weiche Vorlagen hergestellt. Erstaunlicherweise weisen die MoS2/C-Partikeln maßgeschneiderte Morphologien auf, darunter eine granatapfe lartige, hohle und offenporige Struktur. Anschließend wurde die photothermische Umwandlungsleistung dieser Partikeln unter Bestrahlung von Nahinfrarotlicht (NIR) verglichen. Bei der Verwendung der offenporigen MoS2-Teilchen als Katalysator für die Reduktion von 4 -NP hat sich die Reaktionsgeschwindigkeitskonstante unter Lichtbeleuchtung um das 1,5-fache erhöht. Diese katalytische Verbesserung ist hauptsächlich auf die offenporige Architektur und die photothermische Umwandlungsleistung der MoS2-Partikeln zurückzuführen. Diese vorgeschlagene Strategie bietet neue Möglichkeiten für eine effiziente photothermisch unterstützte Katalyse. Im dritten Abschnitt wird ein einfacher und umweltfreundlicher Ansatz für die Herstellung von GP-CNTs-Metall-Verbundwerkstoffen vorgeschlagen, bei dem ein vielseitiges GP- Biomolekül sowohl als Stabilisator für CNTs in Wasser auch als Reduktionsmittel für Edelmetallionen eingesetzt wird. Die zahlreichen Wasserstoffbrüc kenbindungen in den GP- Moleküle verleihen den gebildeten GP-CNTs eine ausgezeichnete Plastizität, die es ermöglicht, polymorphe CNT - Spezies zu erhalten, die von einer Dispersion über eine visko se Paste und ein Gel bis hin zu einem Teig reichen, wenn man ihre Konzentration erhöht. Die GP -Moleküle können Metallvorläufer bei Raumtemperatur ohne zusätzliche Reduktionsmittel reduzieren und ermöglichen so die In -situ- Immobilisierung von Metall-NPs (z. B. Au, Ag und Pd) auf der Oberfläche der CNTs. Die Kombination der hervorragenden katalytischen Eigenschaften von Pd-NPs mit der photothermischen Umwandlungsfähigkeit von CNTs macht den GP -CNTs-Pd- Verbundstoff zu einem vielversprechenden Katalysator für d en effizienten Abbau von 4- NP. Das erhaltene Komposit zeigt eine 1,6-fache Steigerung der Umwandlung unter NIR- Licht- Beleuchtung, wenn es als Katalysator bei der Reduktion von 4-NP verwendet wird, was hauptsächlich auf den starken Licht -Wärme -Umwandlungseffekt der CNTs zurückzuführen ist. Insgesamt eröffnet die vorgeschlagene Methode einen neuen Weg für die Synthese von CNT-Verbundwerkstoffen als nachhaltige und vielseitige Katalysatorplattform. Die in dieser Arbeit vorgestellten Ergebnisse zeigen, wie wichtig die Verwendung weicher Templates für die Synthese vielseitiger Verbundwerkstoffe mit maßgeschneiderter Nanostruktur und Funktionalitäten ist. Die Untersuchung dieser Komposit -Nanomaterialien in katalytischen Reaktionen zeigt ihr Potenzial für die Entwicklung gewünschter Katalysatoren für neue katalytische Prozesse, z. B. für die Elektrokatalyse und die photothermisch unterstützte Katalyse. KW - nanocomposite KW - soft template KW - block copolymer KW - poly(ionic liquid) KW - glycopeptide KW - catalyst KW - Nanokomposit KW - weiche Vorlage KW - Blockcopolymer KW - Poly(ionische Flüssigkeit) KW - Glykopeptid KW - Katalysator Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-612709 ER - TY - THES A1 - Schneider, Helen T1 - Reactive eutectic media based on ammonium formate for the valorization of bio-sourced materials T1 - Reaktive eutektische Medien auf Basis von Ammoniumformiat zur Aufwertung von biobasierten Substanzen N2 - In the last several decades eutectic mixtures of different compositions were successfully used as solvents for vast amount of chemical processes, and only relatively recently they were discovered to be widely spread in nature. As such they are discussed as a third liquid media of the living cell, that is composed of common cell metabolites. Such media may also incorporate water as a eutectic component in order to regulate properties such as enzyme activity or viscosity. Taking inspiration form such sophisticated use of eutectic mixtures, this thesis will explore the use of reactive eutectic media (REM) for organic synthesis. Such unconventional media are characterized by the reactivity of their components, which means that mixture may assume the role of the solvent as well as the reactant itself. The thesis focuses on novel REM based on ammonium formate and investigates their potential for the valorization of bio-sourced materials. The use of REM allows the performance of a number of solvent-free reactions, which entails the benefits of a superior atom and energy economy, higher yields and faster rates compared to reactions in solution. This is evident for the Maillard reaction between ammonium formate and various monosaccharides for the synthesis of substituted pyrazines as well as for a Leuckart type reaction between ammonium formate and levulinic acid for the synthesis of 5-methyl-2-pyrrolidone. Furthermore, reaction of ammonium formate with citric acid for the synthesis of yet undiscovered fluorophores, shows that synthesis in REM can open up unexpected reaction pathways. Another focus of the thesis is the study of water as a third component in the REM. As a result, the concept of two different dilution regimes (tertiary REM and in REM in solvent) appears useful for understanding the influence of water. It is shown that small amounts of water can be of great benefit for the reaction, by reducing viscosity and at the same time increasing reaction yields. REM based on ammonium formate and organic acids are employed for lignocellulosic biomass treatment. The thesis thereby introduces an alternative approach towards lignocellulosic biomass fractionation that promises a considerable process intensification by the simultaneous generation of cellulose and lignin as well as the production of value-added chemicals from REM components. The thesis investigates the generated cellulose and the pathway to nanocellulose generation and also includes the structural analysis of extracted lignin. Finally, the thesis investigates the potential of microwave heating to run chemical reactions in REM and describes the synergy between these two approaches. Microwave heating for chemical reactions and the use of eutectic mixtures as alternative reaction media are two research fields that are often described in the scope of green chemistry. The thesis will therefore also contain a closer inspection of this terminology and its greater goal of sustainability. N2 - Ein eutektisches System beschreibt eine homogene Mischung verschiedener Substanzen, welche bei einer einzigen Temperatur schmilzt und dabei einen Schmelzpunkt aufweist der unterhalb der Schmelzpunkte der einzelnen Komponenten liegt. Solche Gemische können aus simplen organischen Substanzen gebildet werden und haben deshalb in den letzten Jahrzehnten große Aufmerksamkeit als neuartige Lösungsmittel erhalten. Mittlerweile wird ihr Nutzung für eine Vielzahl chemischer Prozesse erforscht. Zudem wurde Entdeckt das solche Gemische auch in der Natur Verbreitung finden. In diesem Zuge werden sie z.B. als drittes flüssiges Medium der lebenden Zelle diskutiert, welches durch eutektische Gemische von gewöhnlichen Zellmetaboliten gebildet wird. Sie können dabei auch Wasser als eutektische Komponente enthalten, um Eigenschaften wie Enzymaktivität oder Viskosität zu regulieren. Inspiriert durch diesen raffinierten Einsatz eutektischer Gemische untersucht diese Arbeit die Verwendung reaktiver eutektischer Medien (REM) für die chemische Anwendung. Solche unkonventionellen Medien zeichnen sich durch die Reaktivität ihrer Komponenten aus, was bedeutet, dass das Gemisch sowohl die Rolle des Lösungsmittels als auch des Reaktanten selbst übernehmen kann. Die Arbeit konzentriert sich auf neuartige REM auf Basis von Ammoniumformiat und untersucht deren Potenzial für die Nutzung von bio-basierten Substanzen. Die Verwendung von REM ermöglicht die Durchführung einer Reihe lösungsmittelfreier Reaktionen, was im Vergleich zu Reaktionen in Lösung die Vorteile einer besseren Atomökonomie, höhere Ausbeuten und schnellere Reaktionsgeschwindigkeiten mit sich bringt. Dies zeigt sich an der Maillard-Reaktion zwischen Ammoniumformiat und verschiedenen Monosacchariden zur Synthese substituierter Pyrazine sowie an der Leuckart-Reaktion zwischen Ammoniumformiat und Lävulinsäure zur Synthese von 5-Methyl-2-pyrrolidon. Darüber hinaus zeigt die Reaktion von Ammoniumformiat mit Zitronensäure zur Synthese noch unentdeckter Fluorophore, dass die Synthese in REM bisher unerschlossene Reaktionswege eröffnen kann. Ein weiterer Schwerpunkt der Arbeit ist die Untersuchung von Wasser als dritte Komponente im REM. Daher erscheint das Konzept zweier unterschiedlicher Verdünnungsregime (tertiäres REM und REM im Lösungsmittel) nützlich für das Verständnis des Einflusses von Wasser. Es zeigt sich, dass kleine Mengen Wasser von großem Nutzen für die Reaktion sein können, indem sie die Viskosität senken und gleichzeitig die Reaktionsausbeuten erhöhen. Für den Aufschluss von Lignocellulose werden REM auf Basis von Ammoniumformiat und organischen Säuren eingesetzt. Die Arbeit stellt damit einen neuen Ansatz für das Konzept der Bioraffinerie vor, der eine erhebliche Prozessintensivierung durch die gleichzeitige Erzeugung von Cellulose, Lignin sowie die Herstellung von Chemikalien aus REM-Komponenten verspricht. Die Arbeit untersucht die erzeugte Cellulose, sowie die Bedingungen zur Erzeugung von Nanocellulose und umfasst die Strukturanalyse von extrahiertem Lignin. Abschließend untersucht die Arbeit das Potenzial der Mikrowellenenergie zum Erhitzen chemischer Reaktionen in REM und beschreibt die Synergie zwischen diesen beiden Ansätzen. Mikrowellentechnologie für chemische Reaktionen und die Verwendung eutektischer Gemische als alternative Reaktionsmedien sind zwei Forschungsfelder, die häufig im Rahmen der Grünen Chemie beschrieben werden. Die Arbeit beinhaltet daher auch eine genauere Betrachtung dieser Terminologie und ihres übergeordneten Ziels der Nachhaltigkeit. KW - solvent-free reactions KW - deep eutectic solvents KW - microwave synthesis KW - green chemistry KW - biorefinery KW - deoxyfructosazine KW - citrazinic acid KW - Bioraffinerie KW - Citrazinsäure KW - stark eutektisches Lösungsmittel KW - Deoxyfructosazin KW - Grüne Chemie KW - Mikrowellensynthese KW - lösungsmittelfreie Synthese Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-613024 ER - TY - THES A1 - Chemura, Sitshengisiwe T1 - Optical spectroscopy on lanthanide-modified nanomaterials for performance monitoring T1 - Optische Spektroskopie an Lanthanid-modifizierten Nanomaterialien zur Leistungsüberwachung N2 - Lanthanide based ceria nanomaterials are important practical materials due to their redox properties that are useful in technology and life sciences. This PhD thesis examined various properties and potential for catalytic and bio-applications of Ln3+-doped ceria nanomaterials. Ce1-xGdxO2-y: Eu3+, gadolinium doped ceria (GDC) (0 ≤ x ≤ 0.4) nanoparticles were synthesized by flame spray pyrolysis (FSP) and studied, followed by 15 % CexZr1-xO2-y: Eu3+|YSZ (0 ≤ x ≤ 1) nanocomposites. Furthermore, Ce1-xYb xO2-y (0.004 ≤ x ≤ 0.22) nanoparticles were synthesized by thermal decomposition and characterized. Finally, CeO2-y: Eu3+ nanoparticles were synthesized by a microemulsion method, biofunctionalized and characterized. The studies undertaken presents a novel approach to structurally elucidate ceria-based nanomaterials by way of Eu3+ and Yb3+ spectroscopy and processing the spectroscopic data with the multi-way decomposition method PARAFAC. Data sets of the three variables: excitation wavelength, emission wavelength and time were used to perform the deconvolution of spectra. GDC nanoparticles from FSP are nano-sized and of roughly cubic shape and crystal structure (Fm3̅m). Raman data revealed four vibrational modes exhibited by Gd3+ containing samples whereas CeO2-y: Eu3+ displays only two. The room temperature, time-resolved emission spectra recorded at λexcitation = 464 nm show that Gd3+ doping results in significantly altered emission spectra compared to pure ceria. The PARAFAC analysis for the pure ceria samples reveals two species; a high-symmetry species and a low-symmetry species. The GDC samples yield two low-symmetry spectra in the same experiment. High-resolution emission spectra recorded at 4 K after probing the 5D0-7F0 transition revealed additional variation in the low symmetry Eu3+ sites in pure ceria and GDC. The data of the Gd3+-containing samples indicates that the average charge density around the Eu3+ ions in the lattice is inversely related to Gd3+ and oxygen vacancy concentration. The particle crystallites of the 773 K and 1273 K annealed Yb3+ -ceria nanostructure materials are nano-sized and have a cubic fluorite structure with four Raman vibrational modes. Elemental maps clearly show that cluster formation occurs for 773 K annealed with high Yb3+ ion concentration from 15 mol % in the ceria lattice. These clusters are destroyed with annealing to 1273 K. The emission spectra observed from room temperature and 4 K measurements for the Ce1-xYb xO2-y samples have a manifold that corresponds to the 2F5/2-2F7/2 transition of Yb3+ ions. Some small shifts are observed in the Stark splitting pattern and are induced by the variations of the crystal field influenced by where the Yb3+ ions are located in the crystal lattices in the samples. Upon mixing ceria with high Yb3+ concentrations, the 2F5/2-2F7/2 transition is also observed in the Stark splitting pattern, but the spectra consist of two broad high background dominated peaks. Annealing the nanomaterials at 1273 K for 2 h changes the spectral signature as new peaks emerge. The deconvolution yielded luminescence decay kinetics as well as the accompanying luminescence spectra of three species for each of the low Yb3+ doped ceria samples annealed at 773 K and one species for the 1273 K annealed samples. However, the ceria samples with high Yb3+ concentration annealed at the two temperatures yielded one species with lower decay times as compared to the Yb3+ doped ceria samples after PARAFAC analysis. Through the calcination of the nanocomposites at two high temperatures, the evolution of the emission patterns from specific Eu3+ lattice sites to indicate structural changes for the nanocomposites was followed. The spectroscopy results effectively complemented the data obtained from the conventional techniques. Annealing the samples at 773 K, resulted in amorphous, unordered domains whereas the TLS of the 1273 K nanocomposites reveal two distinct sites, with most red shifted Eu3+ species coming from pure Eu3+ doped ZrO2 on the YSZ support. Finally, for Eu3+ doped ceria, successful transfer from hydrophobic to water phase and subsequent biocompatibility was achieved using ssDNA. PARAFAC analysis for the Eu3+ in nanoparticles dispersed in toluene and water revealed one Eu3+ species, with slightly differing surface properties for the nanoparticles as far as the luminescence kinetics and solvent environments were concerned. Several functionalized nanoparticles conjugated onto origami triangles after hybridization were visualized by atomic force microscopy (AFM). Putting all into consideration, Eu3+ and Yb3+ spectroscopy was used to monitor the structural changes and determining the feasibility of the nanoparticle transfer into water. PARAFAC proves to be a powerful tool to analyze lanthanide spectra in crystalline solid materials and in solutions, which are characterized by numerous Stark transitions and where measurements usually yield a superposition of different emission contributions to any given spectrum. N2 - Ceroxid-Nanomaterialien auf Lanthanidbasis sind aufgrund ihrer Redox-Eigenschaften wichtige praktische Materialien, die in der Technik und den Biowissenschaften von Nutzen sind. In dieser Dissertation wurden verschiedene Eigenschaften und das Potenzial für katalytische und biologische Anwendungen von Ln3+-dotierten Ceroxid-Nanomaterialien untersucht. Ce1-xGdxO2-y:Eu3+, gadoliniumdotierte Ceroxid (GDC) (0.0 ≤ x ≤ 0.4) Nanopartikel wurden durch Flammenspray-Pyrolyse (FSP) synthetisiert und untersucht, gefolgt von 15 % CexZr1-xO2-y:Eu3+|YSZ (0 ≤ x ≤ 1) Nanokompositen. Außerdem wurden Ce1-xYbxO2-y (0.004 ≤ x ≤ 0.22) Nanopartikel durch thermische Zersetzung synthetisiert und charakterisiert. Schließlich wurden CeO2-y:Eu3+-Nanopartikel durch eine Mikroemulsionsmethode synthetisiert, biofunktionalisiert und charakterisiert. In den durchgeführten Studien wird ein neuartiger Ansatz zur Strukturaufklärung von Nanomaterialien auf Ceroxidbasis mittels Eu3+- und Yb3+-Spektroskopie und Verarbeitung der spektroskopischen Daten mit der Zerlegungsmethode PARAFAC vorgestellt. Für die Entfaltung der Spektren wurden Datensätze mit den drei Variablen Anregungswellenlänge, Emissionswellenlänge und Zeit verwendet. GDC-Partikel aus FSP sind Nanometer groß und besitzen eine grob kubische Form und Kristallstruktur (Fm3̅m). Raman-Daten zeigten vier Schwingungsmoden bei Gd3+-haltigen Proben, während CeO2-y:Eu3+ nur zwei aufweist. Die bei Raumtemperatur aufgezeichneten zeitaufgelösten Emissionsspektren bei λAnregung = 464 nm zeigen, dass die Gd3+-Dotierung im Vergleich zu reinem Ceroxid zu deutlich veränderten Emissionsspektren führt. Die PARAFAC-Analyse für die reinen Ceroxidproben zeigt zwei Spezies: eine hochsymmetrische Spezies und eine niedrigsymmetrische Spezies. Die GDC-Proben liefern im selben Experiment zwei niedrigsymmetrische Species. Hochauflösende Emissionsspektren, die bei 4 K nach der Untersuchung des 5D0-7F0-Übergangs aufgezeichnet wurden, ergaben zusätzliche Variationen bei den niedrigsymmetrischen Eu3+-Stellen in reinem Ceroxid und GDC. Die Daten der Gd3+-haltigen Proben deuten darauf hin, dass die durchschnittliche Ladungsdichte um die Eu3+-Ionen im Gitter in umgekehrter Beziehung zur Gd3+- und Sauerstoffleerstellen-Konzentration steht. Die Partikelkristallite der bei 773 K und 1273 K geglühten Yb3+-Ceroxid-Nanostrukturen sind nanoskalig und haben eine kubische Fluoritstruktur mit vier Raman-Schwingungsmoden. Elementverteilungen zeigen deutlich, dass sich bei 773 K, geglüht mit einer hohen Yb3+-Ionenkonzentration ab 15 Mol-% im Ceroxidgitter, Cluster bilden. Diese Cluster werden beim Glühen auf 1273 K zerstört. Die Emissionsspektren, die bei Messungen bei Raumtemperatur und 4 K für die Ce1-xYbxO2-y-Proben beobachtet wurden, weisen vielfältige Banden auf, die dem 2F5/2-2F7/2-Übergang der Yb3+-Ionen entspricht. Es werden einige kleine Verschiebungen im Stark-Aufspaltungsmuster beobachtet, die durch die Variationen des Kristallfeldes verursacht werden, in Abhängigkeit der Positionen der Yb3+-Ionen in den Kristallgittern. Beim Mischen von Ceroxid mit hohen Yb3+-Konzentrationen wird der 2F5/2-2F7/2-Übergang auch im Stark-Aufspaltungsmuster beobachtet, aber die Spektren bestehen aus zwei breiten, vom Hintergrund dominierten Peaks. Das Ausglühen der Nanomaterialien bei 1273 K für 2 Stunden verändert die spektrale Signatur, da neue Emissionsbanden entstehen. Die Entfaltung ergab die Lumineszenz-Abklingkinetik sowie die begleitenden Lumineszenzspektren von drei Spezies für jede der niedrig Yb3+-dotierten Ceroxidproben, die bei 773 K geglüht wurden, und eine Spezies für die bei 1273 K geglühten Proben. Die bei beiden Temperaturen geglühten Ceroxidproben mit hoher Yb3+-Konzentration ergaben jedoch eine Spezies mit geringeren Abklingzeiten als die Yb3+-dotierten Ceroxidproben nach der PARAFAC-Analyse. Durch die Kalzinierung der Nanokomposite bei zwei hohen Temperaturen wurde die Entwicklung der Emissionsmuster von spezifischen Eu3+-Gitterplätzen verfolgt, die auf strukturelle Veränderungen der Nanokomposite hinweisen. Die Ergebnisse der Spektroskopie ergänzten die mit den konventionellen Techniken gewonnenen Daten. Das Ausglühen der Proben bei 773 K führte zu amorphen, ungeordneten Domänen, während die totalen Lumineszenzpektren der Nanokomposite bei 1273 K zwei unterschiedliche Stellen erkennen lassen, wobei die meisten rotverschobenen Eu3+-Spezies von reinem Eu3+-dotiertem ZrO2 auf dem YSZ-Träger stammen. Schließlich wurde für Eu3+-dotiertes Ceroxid ein erfolgreicher Transfer von der hydrophoben in die Wasserphase und eine anschließende Biokompatibilität mit ssDNA erreicht. Die PARAFAC-Analyse für Eu3+ in Nanopartikeln, die in Toluol und Wasser dispergiert wurden, ergab eine Eu3+-Spezies mit leicht unterschiedlichen Oberflächeneigenschaften der Nanopartikel, was die Lumineszenzkinetik und die Lösungsmittelumgebung betraf. Mehrere funktionalisierte Nanopartikel, die nach der Hybridisierung auf Origami-Dreiecken konjugiert waren, wurden mit Hilfe der Rasterkraftmikroskopie (AFM) sichtbar gemacht. Die Eu3+- und Yb3+-Spektroskopie wurde eingesetzt, um die strukturellen Veränderungen zu überwachen und die Möglichkeit des Transfers der Nanopartikel in Wasser zu bestimmen. PARAFAC erweist sich als ein leistungsfähiges Instrument zur Analyse von Lanthanidenspektren in kristallinen Feststoffen und in Lösungen, die durch zahlreiche Stark-Übergänge gekennzeichnet sind und bei denen Messungen in der Regel eine Überlagerung verschiedener Emissionsbeiträge zu einem bestimmten Spektrum ergeben. KW - cerium oxide KW - europium KW - luminescence KW - PARAFAC KW - ytterbium KW - species KW - Ceroxid KW - Lumineszenz KW - Nanokomposite KW - Spezies Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-619443 ER -