TY - JOUR A1 - Kluth, Oliver A1 - Stadion, Mandy A1 - Gottmann, Pascal A1 - Aga-Barfknecht, Heja A1 - Jähnert, Markus A1 - Scherneck, Stephan A1 - Vogel, Heike A1 - Krus, Ulrika A1 - Seelig, Anett A1 - Ling, Charlotte A1 - Gerdes, Jantje A1 - Schürmann, Annette T1 - Decreased expression of cilia genes in pancreatic islets as a risk factor for type 2 diabetes in mice and humans JF - Cell reports N2 - An insufficient adaptive beta-cell compensation is a hallmark of type 2 diabetes (T2D). Primary cilia function as versatile sensory antennae regulating various cellular processes, but their role on compensatory beta-cell replication has not been examined. Here, we identify a significant enrichment of downregulated, cilia-annotated genes in pancreatic islets of diabetes-prone NZO mice as compared with diabetes-resistant B6-ob/ob mice. Among 327 differentially expressed mouse cilia genes, 81 human orthologs are also affected in islets of diabetic donors. Islets of nondiabetic mice and humans show a substantial overlap of upregulated cilia genes that are linked to cell-cycle progression. The shRNA-mediated suppression of KIF3A, essential for ciliogenesis, impairs division of MINE beta cells as well as in dispersed primary mouse and human islet cells, as shown by decreased BrdU incorporation. These findings demonstrate the substantial role of cilia-gene regulation on islet function and T2D risk. Y1 - 2019 U6 - https://doi.org/10.1016/j.celrep.2019.02.056 SN - 2211-1247 VL - 26 IS - 11 SP - 3027 EP - 3036 PB - Cell Press CY - Maryland Heights ER - TY - JOUR A1 - Gancheva, Sofiya A1 - Ouni, Meriem A1 - Jelenik, Tomas A1 - Koliaki, Chrysi A1 - Szendroedi, Julia A1 - Toledo, Frederico G. S. A1 - Markgraf, Daniel Frank A1 - Pesta, Dominik H. A1 - Mastrototaro, Lucia A1 - De Filippo, Elisabetta A1 - Herder, Christian A1 - Jähnert, Markus A1 - Weiss, Jürgen A1 - Strassburger, Klaus A1 - Schlensak, Matthias A1 - Schürmann, Annette A1 - Roden, Michael T1 - Dynamic changes of muscle insulin sensitivity after metabolic surgery JF - Nature Communications N2 - The mechanisms underlying improved insulin sensitivity after surgically-induced weight loss are still unclear. We monitored skeletal muscle metabolism in obese individuals before and over 52 weeks after metabolic surgery. Initial weight loss occurs in parallel with a decrease in muscle oxidative capacity and respiratory control ratio. Persistent elevation of intramyocellular lipid intermediates, likely resulting from unrestrained adipose tissue lipolysis, accompanies the lack of rapid changes in insulin sensitivity. Simultaneously, alterations in skeletal muscle expression of genes involved in calcium/lipid metabolism and mitochondrial function associate with subsequent distinct DNA methylation patterns at 52 weeks after surgery. Thus, initial unfavorable metabolic changes including insulin resistance of adipose tissue and skeletal muscle precede epigenetic modifications of genes involved in muscle energy metabolism and the long-term improvement of insulin sensitivity. Y1 - 2019 U6 - https://doi.org/10.1038/s41467-019-12081-0 SN - 2041-1723 VL - 10 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Saussenthaler, Sophie A1 - Ouni, Meriem A1 - Baumeier, Christian A1 - Schwerbel, Kristin A1 - Gottmann, Pascal A1 - Christmann, Sabrina A1 - Laeger, Thomas A1 - Schürmann, Annette T1 - Epigenetic regulation of hepatic Dpp4 expression in response to dietary protein JF - The journal of nutritional biochemistry N2 - Dipeptidyl peptidase 4 (DPP4) is known to be elevated in metabolic disturbances such as obesity, type 2 diabetes and fatty liver disease. Lowering DPP4 concentration by pharmacological inhibition improves glucose homeostasis and exhibits beneficial effects to reduce hepatic fat content. As factors regulating the endogenous expression of Dpp4 are unknown, the aim of this study was to examine whether the Dpp4 expression is epigenetically regulated in response to dietary components. Primary hepatocytes were treated with different macronutrients, and Dpp4 mRNA levels and DPP4 activity were evaluated. Moreover, dietary low-protein intervention was conducted in New Zealand obese (NZO) mice, and subsequently, effects on Dpp4 expression, methylation as well as plasma concentration and activity were determined. Our results indicate that Dpp4 mRNA expression is mediated by DNA methylation in several tissues. We therefore consider the Dpp4 southern shore as tissue differentially methylated region. Amino acids increased Dpp4 expression in primary hepatocytes, whereas glucose and fatty acids were without effect. Dietary protein restriction in NZO mice increased Dpp4 DNA methylation in liver leading to diminished Dpp4 expression and consequently to lowered plasma DPP4 activity. We conclude that protein restriction in the adolescent and adult states is a sufficient strategy to reduce DPP4 which in turn contributes to improve glucose homeostasis. (C) 2018 Published by Elsevier Inc. KW - DPP4 KW - DNA methylation KW - Protein restriction KW - Type 2 diabetes KW - NZO Y1 - 2019 U6 - https://doi.org/10.1016/j.jnutbio.2018.09.025 SN - 0955-2863 SN - 1873-4847 VL - 63 SP - 109 EP - 116 PB - Elsevier CY - New York ER - TY - JOUR A1 - Gohlke, Sabrina A1 - Zagoriy, Vyacheslav A1 - Inostroza, Alvaro Cuadros A1 - Meret, Michael A1 - Mancini, Carola A1 - Japtok, Lukasz A1 - Schumacher, Fabian A1 - Kuhlow, Doreen A1 - Graja, Antonia A1 - Stephanowitz, Heike A1 - Jähnert, Markus A1 - Krause, Eberhard A1 - Wernitz, Andreas A1 - Petzke, Klaus-Juergen A1 - Schürmann, Annette A1 - Kleuser, Burkhard A1 - Schulz, Tim Julius T1 - Identification of functional lipid metabolism biomarkers of brown adipose tissue aging JF - Molecular Metabolism N2 - Objective: Aging is accompanied by loss of brown adipocytes and a decline in their thermogenic potential, which may exacerbate the development of adiposity and other metabolic disorders. Presently, only limited evidence exists describing the molecular alterations leading to impaired brown adipogenesis with aging and the contribution of these processes to changes of systemic energy metabolism. Methods: Samples of young and aged murine brown and white adipose tissue were used to compare age-related changes of brown adipogenic gene expression and thermogenesis-related lipid mobilization. To identify potential markers of brown adipose tissue aging, non-targeted proteomic and metabolomic as well as targeted lipid analyses were conducted on young and aged tissue samples. Subsequently, the effects of several candidate lipid classes on brown adipocyte function were examined. Results: Corroborating previous reports of reduced expression of uncoupling protein-1, we observe impaired signaling required for lipid mobilization in aged brown fat after adrenergic stimulation. Omics analyses additionally confirm the age-related impairment of lipid homeostasis and reveal the accumulation of specific lipid classes, including certain sphingolipids, ceramides, and dolichols in aged brown fat. While ceramides as well as enzymes of dolichol metabolism inhibit brown adipogenesis, inhibition of sphingosine 1-phosphate receptor 2 induces brown adipocyte differentiation. Conclusions: Our functional analyses show that changes in specific lipid species, as observed during aging, may contribute to reduced thermogenic potential. They thus uncover potential biomarkers of aging as well as molecular mechanisms that could contribute to the degradation of brown adipocytes, thereby providing potential treatment strategies of age-related metabolic conditions. KW - Brown adipose tissue KW - Aging KW - Ceramides KW - Sphingolipids KW - Dolichol lipids Y1 - 2019 U6 - https://doi.org/10.1016/j.molmet.2019.03.011 SN - 2212-8778 VL - 24 SP - 1 EP - 17 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Wittenbecher, Clemens A1 - Ouni, Meriem A1 - Kuxhaus, Olga A1 - Jähnert, Markus A1 - Gottmann, Pascal A1 - Teichmann, Andrea A1 - Meidtner, Karina A1 - Kriebel, Jennifer A1 - Grallert, Harald A1 - Pischon, Tobias A1 - Boeing, Heiner A1 - Schulze, Matthias Bernd A1 - Schürmann, Annette T1 - Insulin-Like Growth Factor Binding Protein 2 (IGFBP-2) and the Risk of Developing Type 2 Diabetes JF - Diabetes : a journal of the American Diabetes Association N2 - Recent studies suggest that insulin-like growth factor binding protein 2 (IGFBP-2) may protect against type 2 diabetes, but population-based human studies are scarce. We aimed to investigate the prospective association of circulating IGFBP-2 concentrations and of differential methylation in the IGFBP-2 gene with type 2 diabetes risk. Y1 - 2019 U6 - https://doi.org/10.2337/db18-0620 SN - 0012-1797 SN - 1939-327X VL - 68 IS - 1 SP - 188 EP - 197 PB - American Diabetes Association CY - Alexandria ER - TY - JOUR A1 - Castaño Martínez, María Teresa A1 - Schumacher, Fabian A1 - Schumacher, Silke A1 - Kochlik, Bastian Max A1 - Weber, Daniela A1 - Grune, Tilman A1 - Biemann, Ronald A1 - McCann, Adrian A1 - Abraham, Klaus A1 - Weikert, Cornelia A1 - Kleuse, Burkhard A1 - Schürmann, Annette A1 - Laeger, Thomas T1 - Methionine restriction prevents onset of type 2 diabetes in NZO mice JF - The FASEB journal : the official journal of the Federation of American Societies for Experimental Biology N2 - Dietary methionine restriction (MR) is well known to reduce body weight by increasing energy expenditure (EE) and insulin sensitivity. An elevated concentration of circulating fibroblast growth factor 21 (FGF21) has been implicated as a potential underlying mechanism. The aims of our study were to test whether dietary MR in the context of a high-fat regimen protects against type 2 diabetes in mice and to investigate whether vegan and vegetarian diets, which have naturally low methionine levels, modulate circulating FGF21 in humans. New Zealand obese (NZO) mice, a model for polygenic obesity and type 2 diabetes, were placed on isocaloric high-fat diets (protein, 16 kcal%; carbohydrate, 52 kcal%; fat, 32 kcal%) that provided methionine at control (Con; 0.86% methionine) or low levels (0.17%) for 9 wk. Markers of glucose homeostasis and insulin sensitivity were analyzed. Among humans, low methionine intake and circulating FGF21 levels were investigated by comparing a vegan and a vegetarian diet to an omnivore diet and evaluating the effect of a short-term vegetarian diet on FGF21 induction. In comparison with the Con group, MR led to elevated plasma FGF21 levels and prevented the onset of hyperglycemia in NZO mice. MR-fed mice exhibited increased insulin sensitivity, higher plasma adiponectin levels, increased EE, and up-regulated expression of thermogenic genes in subcutaneous white adipose tissue. Food intake and fat mass did not change. Plasma FGF21 levels were markedly higher in vegan humans compared with omnivores, and circulating FGF21 levels increased significantly in omnivores after 4 d on a vegetarian diet. These data suggest that MR induces FGF21 and protects NZO mice from high-fat diet-induced glucose intolerance and type 2 diabetes. The normoglycemic phenotype in vegans and vegetarians may be caused by induced FGF21. MR akin to vegan and vegetarian diets in humans may offer metabolic benefits via increased circulating levels of FGF21 and merits further investigation.-Castano-Martinez, T., Schumacher, F., Schumacher, S., Kochlik, B., Weber, D., Grune, T., Biemann, R., McCann, A., Abraham, K., Weikert, C., Kleuser, B., Schurmann, A., Laeger, T. Methionine restriction prevents onset of type 2 diabetes in NZO mice. KW - energy expenditure KW - hyperglycemia KW - obesity KW - vegan KW - vegetarian Y1 - 2019 U6 - https://doi.org/10.1096/fj.201900150R SN - 0892-6638 SN - 1530-6860 VL - 33 IS - 6 SP - 7092 EP - 7102 PB - Federation of American Societies for Experimental Biology CY - Bethesda ER -