TY - JOUR A1 - Göttgens, Fabian A1 - Weilbacher, Peter Michael A1 - Roth, Martin M. A1 - Dreizler, Stefan A1 - Giesers, Benjamin A1 - Husser, Tim-Oliver A1 - Kamann, Sebastian A1 - Brinchmann, Jarle A1 - Kollatschny, Wolfram A1 - Monreal-Ibero, Ana A1 - Schmidt, Kasper Borello A1 - Wendt, Martin A1 - Wisotzki, Lutz A1 - Bacon, Roland T1 - Discovery of an old nova remnant in the Galactic globular cluster M 22 JF - Astronomy and astrophysics : an international weekly journal N2 - A nova is a cataclysmic event on the surface of a white dwarf in a binary system that increases the overall brightness by several orders of magnitude. Although binary systems with a white dwarf are expected to be overabundant in globular clusters compared with in the Galaxy, only two novae from Galactic globular clusters have been observed. We present the discovery of an emission nebula in the Galactic globular cluster M 22 (NGC 6656) in observations made with the integral-field spectrograph MUSE. We extracted the spectrum of the nebula and used the radial velocity determined from the emission lines to confirm that the nebula is part of NGC 6656. Emission-line ratios were used to determine the electron temperature and density. It is estimated to have a mass of 1-17 x 10(-5) M-circle dot. This mass and the emission-line ratios indicate that the nebula is a nova remnant. Its position coincides with the reported location of a "guest star", an ancient Chinese term for transients, observed in May 48 BCE. With this discovery, this nova may be one of the oldest confirmed extra-solar events recorded in human history. KW - globular clusters: individual: NGC 6656 KW - novae, cataclysmic variables KW - techniques: imaging spectroscopy Y1 - 2019 U6 - https://doi.org/10.1051/0004-6361/201935221 SN - 1432-0746 VL - 626 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Schroetter, Ilane A1 - Bouche, Nicolas F. A1 - Zabl, Johannes A1 - Contini, Thierry A1 - Wendt, Martin A1 - Schaye, Joop A1 - Mitchell, Peter A1 - Muzahid, Sowgat A1 - Marino, Raffaella Anna A1 - Bacon, Roland A1 - Lilly, Simon J. A1 - Richard, Johan A1 - Wisotzki, Lutz T1 - MusE GAs FLOw andWind (MEGAFLOW) BT - III. Galactic wind properties using background quasars JF - Monthly notices of the Royal Astronomical Society N2 - We present results from our on-going MusE GAs FLOw and Wind (MEGAFLOW) survey, which consists of 22 quasar lines of sight, each observed with the integral field unit MUSE and the UVES spectrograph at the ESO Very Large Telescopes (VLT). The goals of this survey are to study the properties of the circumgalactic medium around z similar to 1 star-forming galaxies. The absorption-line selected survey consists of 79 strong MgII absorbers (with rest-frame equivalent width greater than or similar to 0.3 angstrom) and, currently, 86 associated galaxies within 100 projected kpc of the quasar with stellar masses (M-star) from 109 to 1011 M-circle dot. We find that the cool halo gas traced by MgII is not isotropically distributed around these galaxies from the strong bi-modal distribution in the azimuthal angle of the apparent location of the quasar with respect to the galaxy major axis. This supports a scenario in which outflows are bi-conical in nature and co-exist with a co-planar gaseous structure extending at least up to 60-80 kpc. Assuming that absorbers near the minor axis probe outflows, the current MEGAFLOW sample allowed us to select 26 galaxy-quasar pairs suitable for studying winds. From this sample, using a simple geometrical model, we find that the outflow velocity only exceeds the escape velocity when M-star less than or similar to 4 x 10(9) M-circle dot, implying the cool material is likely to fall back except in the smallest haloes. Finally, we find that the mass loading factor., the ratio between the ejected mass rate and the star formation rate, appears to be roughly constant with respect to the galaxy mass. KW - galaxies: evolution KW - galaxies: formation KW - intergalactic medium KW - quasars: absorption lines Y1 - 2019 U6 - https://doi.org/10.1093/mnras/stz2822 SN - 0035-8711 SN - 1365-2966 VL - 490 IS - 3 SP - 4368 EP - 4381 PB - Oxford Univ. Press CY - Oxford ER -