TY - JOUR A1 - Zwickel, Theresa A1 - Kahl, Sandra M. A1 - Klaffke, Horst A1 - Rychlik, Michael A1 - Müller, Marina E. H. T1 - Spotlight on the Underdogs-An Analysis of Underrepresented Alternaria Mycotoxins Formed Depending on Varying Substrate, Time and Temperature Conditions JF - Toxins N2 - Alternaria (A.) is a genus of widespread fungi capable of producing numerous, possibly health-endangering Alternaria toxins (ATs), which are usually not the focus of attention. The formation of ATs depends on the species and complex interactions of various environmental factors and is not fully understood. In this study the influence of temperature (7 degrees C, 25 degrees C), substrate (rice, wheat kernels) and incubation time (4, 7, and 14 days) on the production of thirteen ATs and three sulfoconjugated ATs by three different Alternaria isolates from the species groups A. tenuissima and A. infectoria was determined. High-performance liquid chromatography coupled with tandem mass spectrometry was used for quantification. Under nearly all conditions, tenuazonic acid was the most extensively produced toxin. At 25 degrees C and with increasing incubation time all toxins were formed in high amounts by the two A. tenuissima strains on both substrates with comparable mycotoxin profiles. However, for some of the toxins, stagnation or a decrease in production was observed from day 7 to 14. As opposed to the A. tenuissima strains, the A. infectoria strain only produced low amounts of ATs, but high concentrations of stemphyltoxin III. The results provide an essential insight into the quantitative in vitro AT formation under different environmental conditions, potentially transferable to different field and storage conditions. KW - Alternaria infectoria KW - A. tenuissima KW - mycotoxin profile KW - wheat KW - rice KW - Alternaria toxin sulfates KW - modified Alternaria toxins KW - altertoxins KW - altenuic acid KW - HPLC-MS/MS Y1 - 2016 U6 - https://doi.org/10.3390/toxins8110344 SN - 2072-6651 VL - 8 SP - 570 EP - 583 PB - MDPI CY - Basel ER - TY - JOUR A1 - Zwickel, Theresa A1 - Kahl, Sandra M. A1 - Rychlik, Michael A1 - Müller, Marina E. H. T1 - Chemotaxonomy of Mycotoxigenic Small-Spored Alternaria Fungi BT - Do Multitoxin Mixtures Act as an Indicator for Species Differentiation? JF - Frontiers in microbiology N2 - Necrotrophic as well as saprophytic small-spored Altemaria (A.) species are annually responsible for major losses of agricultural products, such as cereal crops, associated with the contamination of food and feedstuff with potential health-endangering Altemaria toxins. Knowledge of the metabolic capabilities of different species-groups to form mycotoxins is of importance for a reliable risk assessment. 93 Altemaria strains belonging to the four species groups Alternaria tenuissima, A. arborescens, A. altemata, and A. infectoria were isolated from winter wheat kernels harvested from fields in Germany and Russia and incubated under equal conditions. Chemical analysis by means of an HPLC-MS/MS multi-Alternaria-toxin-method showed that 95% of all strains were able to form at least one of the targeted 17 non-host specific Altemaria toxins. Simultaneous production of up to 15 (modified) Altemaria toxins by members of the A. tenuissima, A. arborescens, A. altemata species-groups and up to seven toxins by A. infectoria strains was demonstrated. Overall tenuazonic acid was the most extensively formed mycotoxin followed by alternariol and alternariol mono methylether, whereas altertoxin I was the most frequently detected toxin. Sulfoconjugated modifications of alternariol, alternariol mono methylether, altenuisol and altenuene were frequently determined. Unknown perylene quinone derivatives were additionally detected. Strains of the species-group A. infectoria could be segregated from strains of the other three species-groups due to significantly lower toxin levels and the specific production of infectopyrone. Apart from infectopyrone, alterperylenol was also frequently produced by 95% of the A. infectoria strains. Neither by the concentration nor by the composition of the targeted Altemaria toxins a differentiation between the species-groups A. altemata, A. tenuissima and A. arborescens was possible. KW - small-spored Alternaria fungi KW - Alternaria species-groups KW - Alternaria mycotoxins KW - chemotaxonomy KW - secondary metabolite profiling KW - LC-MS/MS KW - wheat KW - perylene quinone derivatives Y1 - 2018 U6 - https://doi.org/10.3389/fmicb.2018.01368 SN - 1664-302X VL - 9 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Schiro, Gabriele A1 - Colangeli, Pierluigi A1 - Müller, Marina E. H. T1 - A Metabarcoding Analysis of the Mycobiome of Wheat Ears Across a Topographically Heterogeneous Field JF - Frontiers in microbiology KW - Fusarium KW - microclimate KW - canopy KW - fungal community KW - Alternaria KW - spatially induced variance Y1 - 2019 U6 - https://doi.org/10.3389/fmicb.2019.02095 SN - 1664-302X VL - 10 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Raatz, Larissa A1 - Bacchi, Nina A1 - Pirhofer Walzl, Karin A1 - Glemnitz, Michael A1 - Müller, Marina E. H. A1 - Jasmin Radha, Jasmin A1 - Scherber, Christoph T1 - How much do we really lose? BT - Yield losses in the proximity of natural landscape elements in agricultural landscapes JF - Ecology and Evolution N2 - Natural landscape elements (NLEs) in agricultural landscapes contribute to biodiversity and ecosystem services, but are also regarded as an obstacle for large‐scale agricultural production. However, the effects of NLEs on crop yield have rarely been measured. Here, we investigated how different bordering structures, such as agricultural roads, field‐to‐field borders, forests, hedgerows, and kettle holes, influence agricultural yields. We hypothesized that (a) yield values at field borders differ from mid‐field yields and that (b) the extent of this change in yields depends on the bordering structure. We measured winter wheat yields along transects with log‐scaled distances from the border into the agricultural field within two intensively managed agricultural landscapes in Germany (2014 near Göttingen, and 2015–2017 in the Uckermark). We observed a yield loss adjacent to every investigated bordering structure of 11%–38% in comparison with mid‐field yields. However, depending on the bordering structure, this yield loss disappeared at different distances. While the proximity of kettle holes did not affect yields more than neighboring agricultural fields, woody landscape elements had strong effects on winter wheat yields. Notably, 95% of mid‐field yields could already be reached at a distance of 11.3 m from a kettle hole and at a distance of 17.8 m from hedgerows as well as forest borders. Our findings suggest that yield losses are especially relevant directly adjacent to woody landscape elements, but not adjacent to in‐field water bodies. This highlights the potential to simultaneously counteract yield losses close to the field border and enhance biodiversity by combining different NLEs in agricultural landscapes such as creating strips of extensive grassland vegetation between woody landscape elements and agricultural fields. In conclusion, our results can be used to quantify ecocompensations to find optimal solutions for the delivery of productive and regulative ecosystem services in heterogeneous agricultural landscapes. KW - crop production KW - ecosystem services KW - land sharing vs. land sparing KW - natural habitats KW - edge effect KW - winter wheat Y1 - 2019 U6 - https://doi.org/10.1002/ece3.5370 SN - 2045-7758 VL - 9 IS - 13 SP - 7838 EP - 7848 PB - John Wiley & Sons CY - S.I. ER - TY - JOUR A1 - Raatz, Larissa A1 - Bacchi, Nina A1 - Walzl, Karin Pirhofer A1 - Glemnitz, Michael A1 - Müller, Marina E. H. A1 - Jasmin Radha, Jasmin A1 - Scherber, Christoph T1 - How much do we really lose? BT - yield losses in the proximity of natural landscape elements in agricultural landscapes JF - Ecology and evolution N2 - Natural landscape elements (NLEs) in agricultural landscapes contribute to biodiversity and ecosystem services, but are also regarded as an obstacle for large-scale agricultural production. However, the effects of NLEs on crop yield have rarely been measured. Here, we investigated how different bordering structures, such as agricultural roads, field-to-field borders, forests, hedgerows, and kettle holes, influence agricultural yields. We hypothesized that (a) yield values at field borders differ from mid-field yields and that (b) the extent of this change in yields depends on the bordering structure. We measured winter wheat yields along transects with log-scaled distances from the border into the agricultural field within two intensively managed agricultural landscapes in Germany (2014 near Gottingen, and 2015-2017 in the Uckermark). We observed a yield loss adjacent to every investigated bordering structure of 11%-38% in comparison with mid-field yields. However, depending on the bordering structure, this yield loss disappeared at different distances. While the proximity of kettle holes did not affect yields more than neighboring agricultural fields, woody landscape elements had strong effects on winter wheat yields. Notably, 95% of mid-field yields could already be reached at a distance of 11.3 m from a kettle hole and at a distance of 17.8 m from hedgerows as well as forest borders. Our findings suggest that yield losses are especially relevant directly adjacent to woody landscape elements, but not adjacent to in-field water bodies. This highlights the potential to simultaneously counteract yield losses close to the field border and enhance biodiversity by combining different NLEs in agricultural landscapes such as creating strips of extensive grassland vegetation between woody landscape elements and agricultural fields. In conclusion, our results can be used to quantify ecocompensations to find optimal solutions for the delivery of productive and regulative ecosystem services in heterogeneous agricultural landscapes. KW - crop production KW - ecosystem services KW - edge effect KW - land sharing vs KW - land sparing KW - natural habitats KW - winter wheat Y1 - 2019 U6 - https://doi.org/10.1002/ece3.5370 SN - 2045-7758 VL - 9 IS - 13 SP - 7838 EP - 7848 PB - Wiley CY - Hoboken ER -