TY - JOUR A1 - Korup, Oliver A1 - Seidemann, Jan A1 - Mohr, Christian Heinrich T1 - Increased landslide activity on forested hillslopes following two recent volcanic eruptions in Chile JF - Nature geoscience N2 - Large explosive eruptions can bury landscapes beneath thick layers of tephra. Rivers subsequently overloaded with excess pyroclastic sediments have some of the highest reported specific sediment yields. Much less is known about how hillslopes respond to tephra loads. Here, we report a pulsed and distinctly delayed increase in landslide activity following the eruptions of the Chaiten (2008) and Puyehue-Cordon Caulle (2011) volcanoes in southern Chile. Remote-sensing data reveal that land-slides clustered in densely forested hillslopes mostly two to six years after being covered by tephra. This lagged instability is consistent with a gradual loss of shear strength of decaying tree roots in areas of high tephra loads. Surrounding areas with comparable topography, forest cover, rainfall and lithology maintained landslide rates roughly ten times lower. The landslides eroded the landscape by up to 4.8 mm on average within 30 km of both volcanoes, mobilizing up to 1.6 MtC at rates of about 265 tC km(-2) yr(-1). We suggest that these yields may reinforce the elevated river loads of sediment and organic carbon in the decade after the eruptions. We recommend that studies of post-eruptive mass fluxes and hazards include lagged landslide responses of tephra-covered forested hillslopes, to avoid substantial underestimates. Y1 - 2019 U6 - https://doi.org/10.1038/s41561-019-0315-9 SN - 1752-0894 SN - 1752-0908 VL - 12 IS - 4 SP - 284 EP - 289 PB - Nature Publ. Group CY - New York ER -