TY - JOUR A1 - Aliu, E. A1 - Archambault, S. A1 - Arlen, T. A1 - Aune, T. A1 - Behera, B. A1 - Beilicke, M. A1 - Benbow, W. A1 - Berger, K. A1 - Bird, R. A1 - Bouvier, A. A1 - Buckley, J. H. A1 - Bugaev, V. A1 - Byrum, K. A1 - Cerruti, M. A1 - Chen, Xuhui A1 - Ciupik, L. A1 - Connolly, M. P. A1 - Cui, W. A1 - Duke, C. A1 - Dumm, J. A1 - Errando, M. A1 - Falcone, A. A1 - Federici, S. A1 - Feng, Q. A1 - Finley, J. P. A1 - Fleischhack, H. A1 - Fortin, P. A1 - Fortson, L. A1 - Furniss, A. A1 - Galante, N. A1 - Gillanders, G. H. A1 - Griffin, S. A1 - Griffiths, S. T. A1 - Grube, J. A1 - Gyuk, G. A1 - Hanna, D. A1 - Holder, J. A1 - Hughes, G. A1 - Humensky, T. B. A1 - Johnson, C. A. A1 - Kaaret, P. A1 - Kertzman, M. A1 - Khassen, Y. A1 - Kieda, D. A1 - Krawczynski, H. A1 - Krennrich, F. A1 - Lang, M. J. A1 - Madhavan, A. S. A1 - Maier, G. A1 - Majumdar, P. A1 - McArthur, S. A1 - McCann, A. A1 - Meagher, K. A1 - Millis, J. A1 - Moriarty, P. A1 - Mukherjee, R. A1 - Nieto, D. A1 - Ong, R. A. A1 - Otte, A. N. A1 - Park, N. A1 - Perkins, J. S. A1 - Pohl, M. A1 - Popkow, A. A1 - Prokoph, H. A1 - Quinn, J. A1 - Ragan, K. A1 - Reyes, L. C. A1 - Reynolds, P. T. A1 - Richards, G. T. A1 - Roache, E. A1 - Sembroski, G. H. A1 - Smith, A. W. A1 - Staszak, D. A1 - Telezhinsky, Igor O. A1 - Theiling, M. A1 - Varlotta, A. A1 - Vassiliev, V. V. A1 - Vincent, S. A1 - Wakely, S. P. A1 - Weekes, T. C. A1 - Weinstein, A. A1 - Welsing, R. A1 - Williams, D. A. A1 - Zajczyk, A. A1 - Zitzer, B. T1 - A three-year multi-wavelenght study of the very-high-energy gamma-ray Blazar 1ES 0229+200 JF - The astrophysical journal : an international review of spectroscopy and astronomical physics KW - BL Lacertae objects: general KW - BL Lacertae objects: individual (1ES 0229+200, VER J0232+202) KW - diffuse radiation KW - galaxies: active KW - gamma rays: general KW - magnetic fields Y1 - 2014 U6 - https://doi.org/10.1088/0004-637X/782/1/13 SN - 0004-637X SN - 1538-4357 VL - 782 IS - 1 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Archambault, S. A1 - Archer, A. A1 - Benbow, W. A1 - Buchovecky, M. A1 - Bugaev, V. A1 - Cerruti, M. A1 - Connolly, M. P. A1 - Cui, W. A1 - Falcone, A. A1 - Alonso, M. Fernandez A1 - Finley, J. P. A1 - Fleischhack, H. A1 - Fortson, L. A1 - Furniss, A. A1 - Griffin, S. A1 - Hutten, M. A1 - Hervet, O. A1 - Holder, J. A1 - Humensky, T. B. A1 - Johnson, C. A. A1 - Kaaret, P. A1 - Kar, P. A1 - Kieda, D. A1 - Krause, M. A1 - Krennrich, F. A1 - Lang, M. J. A1 - Lin, T. T. Y. A1 - Maier, G. A1 - McArthur, S. A1 - Moriarty, P. A1 - Nieto, D. A1 - Ong, R. A. A1 - Otte, A. N. A1 - Pohl, M. A1 - Popkow, A. A1 - Pueschel, Elisa A1 - Quinn, J. A1 - Ragan, K. A1 - Reynolds, P. T. A1 - Richards, G. T. A1 - Roache, E. A1 - Rovero, A. C. A1 - Sadeh, I. A1 - Shahinyan, K. A1 - Staszak, D. A1 - Telezhinsky, Igor O. A1 - Tyler, J. A1 - Wakely, S. P. A1 - Weinstein, A. A1 - Weisgarber, T. A1 - Wilcox, P. A1 - Wilhelm, Alina A1 - Williams, D. A. A1 - Zitzer, B. T1 - Search for Magnetically Broadened Cascade Emission from Blazars with VERITAS JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - We present a search for magnetically broadened gamma-ray emission around active galactic nuclei (AGNs), using VERITAS observations of seven hard-spectrum blazars. A cascade process occurs when multi-TeV gamma-rays from an AGN interact with extragalactic background light (EBL) photons to produce electron-positron pairs, which then interact with cosmic microwave background photons via inverse-Compton scattering to produce gamma-rays. Due to the deflection of the electron- positron pairs, a non-zero intergalactic magnetic field (IGMF) would potentially produce detectable effects on the angular distribution of the cascade emission. In particular, an angular broadening compared to the unscattered emission could occur. Through non-detection of angularly broadened emission from 1ES 1218 vertical bar 304, the source with the largest predicted cascade fraction, we exclude a range of IGMF strengths around 10(-14) G at the 95% confidence level. The extent of the exclusion range varies with the assumptions made about the intrinsic spectrum of 1ES. 1218+304 and the EBL model used in the simulation of the cascade process. All of the sources are used to set limits on the flux due to extended emission. KW - BL Lacertae objects: general KW - galaxies: active KW - gamma rays: galaxies KW - magnetic fields Y1 - 2017 U6 - https://doi.org/10.3847/1538-4357/835/2/288 SN - 0004-637X SN - 1538-4357 VL - 835 IS - 2 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Arlen, T. A1 - Aune, T. A1 - Beilicke, M. A1 - Benbow, W. A1 - Bouvier, A. A1 - Buckley, J. H. A1 - Bugaev, V. A1 - Byrum, K. A1 - Cannon, A. A1 - Cesarini, A. A1 - Ciupik, L. A1 - Collins-Hughes, E. A1 - Connolly, M. P. A1 - Cui, W. A1 - Dickherber, R. A1 - Dumm, J. A1 - Falcone, A. A1 - Federici, S. A1 - Feng, Q. A1 - Finley, J. P. A1 - Finnegan, G. A1 - Fortson, L. A1 - Furniss, A. A1 - Galante, N. A1 - Gall, D. A1 - Godambe, S. A1 - Griffin, S. A1 - Grube, J. A1 - Gyuk, G. A1 - Holder, J. A1 - Huan, H. A1 - Hughes, G. A1 - Humensky, T. B. A1 - Imran, A. A1 - Kaaret, P. A1 - Karlsson, N. A1 - Kertzman, M. A1 - Khassen, Y. A1 - Kieda, D. A1 - Krawczynski, H. A1 - Krennrich, F. A1 - Lee, K. A1 - Madhavan, A. S. A1 - Maier, G. A1 - Majumdar, P. A1 - McArthur, S. A1 - McCann, A. A1 - Moriarty, P. A1 - Mukherjee, R. A1 - Nelson, T. A1 - de Bhroithe, A. O'Faolain A1 - Ong, R. A. A1 - Orr, M. A1 - Otte, A. N. A1 - Park, N. A1 - Perkins, J. S. A1 - Pohl, Martin A1 - Prokoph, H. A1 - Quinn, J. A1 - Ragan, K. A1 - Reyes, L. C. A1 - Reynolds, P. T. A1 - Roache, E. A1 - Ruppel, J. A1 - Saxon, D. B. A1 - Schroedter, M. A1 - Sembroski, G. H. A1 - Skole, C. A1 - Smith, A. W. A1 - Telezhinsky, Igor O. A1 - Tesic, G. A1 - Theiling, M. A1 - Thibadeau, S. A1 - Tsurusaki, K. A1 - Varlotta, A. A1 - Vivier, M. A1 - Wakely, S. P. A1 - Ward, J. E. A1 - Weinstein, A. A1 - Welsing, R. A1 - Williams, D. A. A1 - Zitzer, B. A1 - Pfrommer, C. A1 - Pinzke, A. T1 - Constraints on cosmic rays, magnetic fields, and dark matter fromgamma-ray observations of the coma cluster of galaxies with veritas and fermi JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - Observations of radio halos and relics in galaxy clusters indicate efficient electron acceleration. Protons should likewise be accelerated and, on account of weak energy losses, can accumulate, suggesting that clusters may also be sources of very high energy (VHE; E > 100 GeV) gamma-ray emission. We report here on VHE gamma-ray observations of the Coma galaxy cluster with the VERITAS array of imaging Cerenkov telescopes, with complementing Fermi Large Area Telescope observations at GeV energies. No significant gamma-ray emission from the Coma Cluster was detected. Integral flux upper limits at the 99% confidence level were measured to be on the order of (2-5) x 10(-8) photonsm(-2) s(-1) (VERITAS, >220 GeV) and similar to 2 x 10(-6) photonsm(-2) s(-1) (Fermi, 1-3GeV), respectively. We use the gamma-ray upper limits to constrain cosmic rays (CRs) and magnetic fields in Coma. Using an analytical approach, the CR-to-thermal pressure ratio is constrained to be < 16% from VERITAS data and <1.7% from Fermi data (averaged within the virial radius). These upper limits are starting to constrain the CR physics in self-consistent cosmological cluster simulations and cap the maximum CR acceleration efficiency at structure formation shocks to be <50%. Alternatively, this may argue for non-negligible CR transport processes such as CR streaming and diffusion into the outer cluster regions. Assuming that the radio-emitting electrons of the Coma halo result from hadronic CR interactions, the observations imply a lower limit on the central magnetic field in Coma of similar to(2-5.5) mu G, depending on the radial magnetic field profile and on the gamma-ray spectral index. Since these values are below those inferred by Faraday rotation measurements in Coma (for most of the parameter space), this renders the hadronic model a very plausible explanation of the Coma radio halo. Finally, since galaxy clusters are dark matter (DM) dominated, the VERITAS upper limits have been used to place constraints on the thermally averaged product of the total self-annihilation cross section and the relative velocity of the DM particles, . KW - cosmic rays KW - dark matter KW - galaxies: clusters: general KW - galaxies: clusters: individual (Coma (ACO 1656)) KW - gamma rays: galaxies: clusters KW - magnetic fields Y1 - 2012 U6 - https://doi.org/10.1088/0004-637X/757/2/123 SN - 0004-637X VL - 757 IS - 2 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Green, Luci M. A1 - Kliem, Bernhard A1 - Wallace, A. J. T1 - Photospheric flux cancellation and associated flux rope formation and eruption JF - Astronomy and astrophysics : an international weekly journal N2 - Aims. We study an evolving bipolar active region that exhibits flux cancellation at the internal polarity inversion line, the formation of a soft X-ray sigmoid along the inversion line and a coronal mass ejection. The aim is to investigate the quantity of flux cancellation that is involved in flux rope formation in the time period leading up to the eruption. Methods. The active region is studied using its extreme ultraviolet and soft X-ray emissions as it evolves from a sheared arcade to flux rope configuration. The evolution of the photospheric magnetic field is described and used to estimate how much flux is reconnected into the flux rope. Results. About one third of the active region flux cancels at the internal polarity inversion line in the 2.5 days leading up to the eruption. In this period, the coronal structure evolves from a weakly to a highly sheared arcade and then to a sigmoid that crosses the inversion line in the inverse direction. These properties suggest that a flux rope has formed prior to the eruption. The amount of cancellation implies that up to 60% of the active region flux could be in the body of the flux rope. We point out that only part of the cancellation contributes to the flux in the rope if the arcade is only weakly sheared, as in the first part of the evolution. This reduces the estimated flux in the rope to similar to 30% or less of the active region flux. We suggest that the remaining discrepancy between our estimate and the limiting value of similar to 10% of the active region flux, obtained previously by the flux rope insertion method, results from the incomplete coherence of the flux rope, due to nonuniform cancellation along the polarity inversion line. A hot linear feature is observed in the active region which rises as part of the eruption and then likely traces out the field lines close to the axis of the flux rope. The flux cancellation and changing magnetic connections at one end of this feature suggest that the flux rope reaches coherence by reconnection immediately before and early in the impulsive phase of the associated flare. The sigmoid is destroyed in the eruption but reforms quickly, with the amount of cancellation involved being much smaller than in the course of its original formation. KW - Sun: activity KW - Sun: coronal mass ejections (CMEs) KW - magnetic fields KW - magnetic reconnection KW - Sun: photosphere KW - Sun: magnetic topology Y1 - 2011 U6 - https://doi.org/10.1051/0004-6361/201015146 SN - 0004-6361 VL - 526 IS - 2 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Kliem, Bernhard A1 - Seehafer, Norbert T1 - Helicity shedding by flux rope ejection JF - Astronomy and astrophysics : an international weekly journal N2 - We quantitatively address the conjecture that magnetic helicity must be shed from the Sun by eruptions launching coronal mass ejections in order to limit its accumulation in each hemisphere. By varying the ratio of guide and strapping field and the flux rope twist in a parametric simulation study of flux rope ejection from approximately marginally stable force-free equilibria, different ratios of self- and mutual helicity are set and the onset of the torus or helical kink instability is obtained. The helicity shed is found to vary over a broad range from a minor to a major part of the initial helicity, with self helicity being largely or completely shed and mutual helicity, which makes up the larger part of the initial helicity, being shed only partly. Torus-unstable configurations with subcritical twist and without a guide field shed up to about two-thirds of the initial helicity, while a highly twisted, kink-unstable configuration sheds only about one-quarter. The parametric study also yields stable force-free flux rope equilibria up to a total flux-normalized helicity of 0.25, with a ratio of self- to total helicity of 0.32 and a ratio of flux rope to external poloidal flux of 0.94. These results numerically demonstrate the conjecture of helicity shedding by coronal mass ejections and provide a first account of its parametric dependence. Both self- and mutual helicity are shed significantly; this reduces the total initial helicity by a fraction of ∼0.4--0.65 for typical source region parameters. KW - instabilities KW - magnetic fields KW - magnetohydrodynamics (MHD) KW - Sun KW - corona KW - coronal mass ejections (CMEs) KW - flares Y1 - 2022 U6 - https://doi.org/10.1051/0004-6361/202142422 SN - 0004-6361 SN - 1432-0746 VL - 659 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Lopez-Barquero, Vanessa A1 - Xu, S. A1 - Desiati, Paolo A1 - Lazarian, Alex A1 - Pogorelov, Nikolai V. A1 - Yan, Huirong T1 - TeV Cosmic-Ray Anisotropy from the Magnetic Field at the Heliospheric Boundary JF - The astrophysical journal : an international review of spectroscopy and astronomical physics KW - cosmic rays KW - magnetic fields KW - magnetohydrodynamics (MHD) KW - solar wind KW - Sun: heliosphere Y1 - 2017 U6 - https://doi.org/10.3847/1538-4357/aa74d1 SN - 0004-637X SN - 1538-4357 VL - 842 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Nishikawa, Ken-Ichi A1 - Hardee, P. E. A1 - Dutan, I. A1 - Niemiec, J. A1 - Medvedev, M. A1 - Mizuno, Y. A1 - Meli, A. A1 - Sol, H. A1 - Zhang, B. A1 - Pohl, Martin A1 - Hartmann, D. H. T1 - Magnetic agnetic field generation in core-sheath jets via the kinetic Kelvin-Helmholtz instability JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - We have investigated magnetic field generation in velocity shears via the kinetic Kelvin-Helmholtz instability (kKHI) using a relativistic plasma jet core and stationary plasma sheath. Our three-dimensional particle-in-cell simulations consider plasma jet cores with Lorentz factors of 1.5, 5, and 15 for both electron-proton and electron-positron plasmas. For electron-proton plasmas, we find generation of strong large-scale DC currents and magnetic fields that extend over the entire shear surface and reach thicknesses of a few tens of electron skin depths. For electron-positron plasmas, we find generation of alternating currents and magnetic fields. Jet and sheath plasmas are accelerated across the shear surface in the strong magnetic fields generated by the kKHI. The mixing of jet and sheath plasmas generates a transverse structure similar to that produced by the Weibel instability. KW - acceleration of particles KW - magnetic fields KW - plasmas KW - radiation mechanisms: non-thermal KW - relativistic processes KW - stars: jets Y1 - 2014 U6 - https://doi.org/10.1088/0004-637X/793/1/60 SN - 0004-637X SN - 1538-4357 VL - 793 IS - 1 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Poppenhäger, Katja T1 - How stars and planets interact BT - A look through the high-energy window JF - Astronomische Nachrichten = Astronomical notes N2 - The architecture of exoplanetary systems is often different from the solar system, with some exoplanets being in close orbits around their host stars and having orbital periods of only a few days. In analogy to interactions between stars in close binary systems, one may expect interactions between the star and the exoplanet as well. From theoretical considerations, effects on the host star through tidal and magnetic interaction with the exoplanet are possible; for the exoplanet, some interesting implications are the evaporation of the planetary atmosphere and potential effects on the planetary magnetism. In this review, several possible interaction pathways and their observational prospects and existing evidence are discussed. A particular emphasis is put on observational opportunities for these kinds of effects in the high-energy regime. KW - magnetic fields KW - planet-star interactions KW - stars KW - activity KW - X-rays Y1 - 2019 U6 - https://doi.org/10.1002/asna.201913619 SN - 0004-6337 SN - 1521-3994 VL - 340 IS - 4 SP - 329 EP - 333 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Rüdiger, Günther A1 - Küker, Manfred T1 - Angular momentum transport by magnetoconvection and the magnetic modulation of the solar differential rotation JF - Astronomy and astrophysics : an international weekly journal / European Southern Observatory (ESO) N2 - In order to explain the variance of the solar rotation law during the activity minima and maxima, the angular momentum transport by rotating magnetoconvection is simulated in a convective box penetrated by an inclined azimuthal magnetic field. Turbulence-induced kinetic and magnetic stresses and the Lorentz force of the large-scale magnetic background field are the basic transporters of angular momentum. Without rotation, the sign of the magnetic stresses naturally depends on the signs of the field components as positive (negative) B theta B phi transport the angular momentum poleward (equatorward). For fast enough rotation, however, the turbulence-originated Reynolds stresses start to dominate the transport of the angular momentum flux. The simulations show that positive ratios of the two meridional magnetic field components to the azimuthal field reduce the inward radial as well as the equatorward latitudinal transport, which result from hydrodynamic calculations. Only for B theta B phi>0 (generated by solar-type rotation laws with an accelerated equator) does the magnetic-influenced rotation at the solar surface prove to be flatter than the nonmagnetic profile together with the observed slight spin-down of the equator. The latter phenomenon does not appear for antisolar rotation with polar vortex as well as for rotation laws with prevailing radial shear. KW - magnetic fields KW - Sun KW - rotation KW - convection Y1 - 2021 U6 - https://doi.org/10.1051/0004-6361/202039912 SN - 1432-0746 VL - 649 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Rüdiger, Günther A1 - Schultz, Manfred T1 - Large-scale dynamo action of magnetized Taylor-Couette flows JF - Monthly notices of the Royal Astronomical Society N2 - A conducting Taylor-Couette flow with quasi-Keplerian rotation law containing a toroidal magnetic field serves as a mean-field dynamo model of the Tayler-Spruit type. The flows are unstable against non-axisymmetric perturbations which form electromotive forces defining a effect and eddy diffusivity. If both degenerated modes with m = +/- 1 are excited with the same power then the global a effect vanishes and a dynamo cannot work. It is shown, however, that the Tayler instability produces finite alpha effects if only an isolated mode is considered but this intrinsic helicity of the single-mode is too low for an alpha(2) dynamo. Moreover, an alpha Omega dynamo model with quasi-Keplerian rotation requires a minimum magnetic Reynolds number of rotation of Rm similar or equal to 2000 to work. Whether it really works depends on assumptions about the turbulence energy. For a steeper-than-quadratic dependence of the turbulence intensity on the magnetic field, however, dynamos are only excited if the resulting magnetic eddy diffusivity approximates its microscopic value, eta(T) similar or equal to eta. By basically lower or larger eddy diffusivities the dynamo instability is suppressed. KW - dynamo KW - instabilities KW - MHD KW - magnetic fields Y1 - 2020 U6 - https://doi.org/10.1093/mnras/staa293 SN - 0035-8711 SN - 1365-2966 VL - 493 IS - 1 SP - 1249 EP - 1260 PB - Oxford Univ. Press CY - Oxford ER -