TY - THES A1 - Schaumburg, Josephine T1 - Men are not better negotiators after all! T1 - Männer sind doch nicht die besseren Verhandlungspartner! BT - Clarification and critical analysis of existing theory on gender and negotiation performance BT - Klärung und kritische Analyse der bestehenden Theorie zu Geschlecht und Verhandlungsleistung T2 - Schriftenreihe zum Verhandlungsmanagement N2 - This dissertation examines the lack of clarity in the scientific literature regarding gender and negotiation performance. It is often claimed that men negotiate better than women, yet it is simultaneously emphasized that results strongly depend on context. Through the use of qualitative methods such as content analysis and critical mixed-methods review, the research question: "Are women truly inferior negotiators compared to men?" is addressed. The study comprises a descriptive and an interpretive part. The descriptive section illuminates various interpretations of gender-specific negotiation theory among citing authors, with 67% arguing for a general superiority of men. However, given the high variance in gender-specific differences, the focus should instead be on the context-dependency of negotiation performance. Generalized statements can be made within contexts, but not across them. In the interpretive section, several factors contributing to this misinterpretation are highlighted, including discrepancies in the definition of negotiation performance and distortions in research communication.. From a scientific perspective, this study underscores the need for a nuanced sociological analysis and warns against the one-sided acceptance of inaccurate scientific interpretations. From a practical standpoint, it amplifies the voices of women affected by biased research paradigms. Overall, the dissertation clarifies the theory of gender-specific negotiation performance and advocates for the elimination of biases in scientific discourse. N2 - Diese Dissertation untersucht den Mangel an Klarheit in der wissenschaftlichen Literatur bezüglich Geschlecht und Verhandlungsleistung. Es wird oft behauptet, dass Männer besser verhandeln als Frauen, doch gleichzeitig wird betont, dass die Ergebnisse stark vom Kontext abhängen. Durch den Einsatz qualitativer Methoden wie Inhaltsanalyse und einem kritischen Mixed-Methods-Review wird der Forschungsfrage: "Sind Frauen wirklich schlechtere Verhandlungspartner als Männer?" nachgegangen. Die Studie enthält einen deskriptiven und einen interpretativen Teil. Im deskriptiven Abschnitt werden verschiedene Interpretationen der geschlechtsspezifischen Verhandlungstheorie unter zitierenden Autoren beleuchtet, wobei 67 % von einer generellen Überlegenheit der Männer sprechen. Angesichts der hohen Varianz geschlechtsspezifischer Unterschiede sollte stattdessen die Kontextabhängigkeit der Verhandlungsleistung im Mittelpunkt stehen. Verallgemeinernde Aussagen können innerhalb von Kontexten getroffen werden, aber nicht über verschiedene Kontexte hinweg. Im interpretativen Abschnitt werden mehrere Faktoren aufgezeigt, die zu dieser Fehlinterpretation beitragen, darunter Unstimmigkeiten bei der Definition von Verhandlungsleistung und Verzerrungen in der Forschungskommunikation. Wissenschaftlich betrachtet unterstreicht diese Studie die Notwendigkeit einer differenzierten soziologischen Analyse und warnt vor der einseitigen Annahme ungenauer wissenschaftlicher Interpretationen. Praktisch gesehen stärkt sie die Stimmen von Frauen, die von voreingenommenen Forschungsparadigmen betroffen sind. Insgesamt verdeutlicht die Dissertation die Theorie zur geschlechtsspezifischen Verhandlungsleistung und plädiert für die Beseitigung von Vorurteilen im wissenschaftlichen Diskurs. KW - Geschlecht KW - Verhandlungsleistung KW - Theorie KW - wissenschaftliche Narrative KW - Voreingenommenheit in der Wissenschaft KW - Gender KW - Negotiation Performance KW - Theory KW - Scientific Narratives KW - Bias in Science Y1 - 2024 SN - 978-3-339-13798-2 SN - 978-3-339-13799-9 SN - 2365-7898 VL - 24 PB - Kovac CY - Hamburg ER - TY - JOUR A1 - Doerr, Benjamin A1 - Krejca, Martin Stefan T1 - A simplified run time analysis of the univariate marginal distribution algorithm on LeadingOnes JF - Theoretical computer science N2 - With elementary means, we prove a stronger run time guarantee for the univariate marginal distribution algorithm (UMDA) optimizing the LEADINGONES benchmark function in the desirable regime with low genetic drift. If the population size is at least quasilinear, then, with high probability, the UMDA samples the optimum in a number of iterations that is linear in the problem size divided by the logarithm of the UMDA's selection rate. This improves over the previous guarantee, obtained by Dang and Lehre (2015) via the deep level-based population method, both in terms of the run time and by demonstrating further run time gains from small selection rates. Under similar assumptions, we prove a lower bound that matches our upper bound up to constant factors. KW - Theory KW - Estimation-of-distribution algorithm KW - Run time analysis Y1 - 2021 U6 - https://doi.org/10.1016/j.tcs.2020.11.028 SN - 0304-3975 SN - 1879-2294 VL - 851 SP - 121 EP - 128 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Friedrich, Tobias A1 - Kötzing, Timo A1 - Krejca, Martin Stefan T1 - Unbiasedness of estimation-of-distribution algorithms JF - Theoretical computer science N2 - In the context of black-box optimization, black-box complexity is used for understanding the inherent difficulty of a given optimization problem. Central to our understanding of nature-inspired search heuristics in this context is the notion of unbiasedness. Specialized black-box complexities have been developed in order to better understand the limitations of these heuristics - especially of (population-based) evolutionary algorithms (EAs). In contrast to this, we focus on a model for algorithms explicitly maintaining a probability distribution over the search space: so-called estimation-of-distribution algorithms (EDAs). We consider the recently introduced n-Bernoulli-lambda-EDA framework, which subsumes, for example, the commonly known EDAs PBIL, UMDA, lambda-MMAS(IB), and cGA. We show that an n-Bernoulli-lambda-EDA is unbiased if and only if its probability distribution satisfies a certain invariance property under isometric automorphisms of [0, 1](n). By restricting how an n-Bernoulli-lambda-EDA can perform an update, in a way common to many examples, we derive conciser characterizations, which are easy to verify. We demonstrate this by showing that our examples above are all unbiased. (C) 2018 Elsevier B.V. All rights reserved. KW - Estimation-of-distribution algorithm KW - Unbiasedness KW - Theory Y1 - 2019 U6 - https://doi.org/10.1016/j.tcs.2018.11.001 SN - 0304-3975 SN - 1879-2294 VL - 785 SP - 46 EP - 59 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Friedrich, Tobias A1 - Kötzing, Timo A1 - Krejca, Martin Stefan A1 - Sutton, Andrew M. T1 - Robustness of Ant Colony Optimization to Noise JF - Evolutionary computation N2 - Recently, ant colony optimization (ACO) algorithms have proven to be efficient in uncertain environments, such as noisy or dynamically changing fitness functions. Most of these analyses have focused on combinatorial problems such as path finding. We rigorously analyze an ACO algorithm optimizing linear pseudo- Boolean functions under additive posterior noise. We study noise distributions whose tails decay exponentially fast, including the classical case of additive Gaussian noise. Without noise, the classical (mu + 1) EA outperforms any ACO algorithm, with smaller mu being better; however, in the case of large noise, the (mu + 1) EA fails, even for high values of mu (which are known to help against small noise). In this article, we show that ACO is able to deal with arbitrarily large noise in a graceful manner; that is, as long as the evaporation factor. is small enough, dependent on the variance s2 of the noise and the dimension n of the search space, optimization will be successful. We also briefly consider the case of prior noise and prove that ACO can also efficiently optimize linear functions under this noise model. KW - Ant colony optimization KW - Noisy Fitness KW - Theory KW - Run time analysis Y1 - 2016 U6 - https://doi.org/10.1162/EVCO_a_00178 SN - 1063-6560 SN - 1530-9304 VL - 24 SP - 237 EP - 254 PB - MIT Press CY - Cambridge ER - TY - JOUR A1 - Gebser, Martin A1 - Schaub, Torsten H. T1 - Tableau calculi for logic programs under answer set semantics JF - ACM transactions on computational logic N2 - We introduce formal proof systems based on tableau methods for analyzing computations in Answer Set Programming (ASP). Our approach furnishes fine-grained instruments for characterizing operations as well as strategies of ASP solvers. The granularity is detailed enough to capture a variety of propagation and choice methods of algorithms used for ASP solving, also incorporating SAT-based and conflict-driven learning approaches to some extent. This provides us with a uniform setting for identifying and comparing fundamental properties of ASP solving approaches. In particular, we investigate their proof complexities and show that the run-times of best-case computations can vary exponentially between different existing ASP solvers. Apart from providing a framework for comparing ASP solving approaches, our characterizations also contribute to their understanding by pinning down the constitutive atomic operations. Furthermore, our framework is flexible enough to integrate new inference patterns, and so to study their relation to existing ones. To this end, we generalize our approach and provide an extensible basis aiming at a modular incorporation of additional language constructs. This is exemplified by augmenting our basic tableau methods with cardinality constraints and disjunctions. KW - Theory KW - Answer Set Programming KW - tableau calculi KW - proof complexity Y1 - 2013 U6 - https://doi.org/10.1145/2480759.2480767 SN - 1529-3785 VL - 14 IS - 2 PB - Association for Computing Machinery CY - New York ER - TY - JOUR A1 - Delgrande, James A1 - Schaub, Torsten H. A1 - Tompits, Hans A1 - Woltran, Stefan T1 - A model-theoretic approach to belief change in answer set programming JF - ACM transactions on computational logic N2 - We address the problem of belief change in (nonmonotonic) logic programming under answer set semantics. Our formal techniques are analogous to those of distance-based belief revision in propositional logic. In particular, we build upon the model theory of logic programs furnished by SE interpretations, where an SE interpretation is a model of a logic program in the same way that a classical interpretation is a model of a propositional formula. Hence we extend techniques from the area of belief revision based on distance between models to belief change in logic programs. We first consider belief revision: for logic programs P and Q, the goal is to determine a program R that corresponds to the revision of P by Q, denoted P * Q. We investigate several operators, including (logic program) expansion and two revision operators based on the distance between the SE models of logic programs. It proves to be the case that expansion is an interesting operator in its own right, unlike in classical belief revision where it is relatively uninteresting. Expansion and revision are shown to satisfy a suite of interesting properties; in particular, our revision operators satisfy all or nearly all of the AGM postulates for revision. We next consider approaches for merging a set of logic programs, P-1,...,P-n. Again, our formal techniques are based on notions of relative distance between the SE models of the logic programs. Two approaches are examined. The first informally selects for each program P-i those models of P-i that vary the least from models of the other programs. The second approach informally selects those models of a program P-0 that are closest to the models of programs P-1,...,P-n. In this case, P-0 can be thought of as a set of database integrity constraints. We examine these operators with regards to how they satisfy relevant postulate sets. Last, we present encodings for computing the revision as well as the merging of logic programs within the same logic programming framework. This gives rise to a direct implementation of our approach in terms of off-the-shelf answer set solvers. These encodings also reflect the fact that our change operators do not increase the complexity of the base formalism. KW - Theory KW - Answer set programming KW - belief revision KW - belief merging KW - program encodings KW - strong equivalence Y1 - 2013 U6 - https://doi.org/10.1145/2480759.2480766 SN - 1529-3785 VL - 14 IS - 2 PB - Association for Computing Machinery CY - New York ER -