TY - JOUR A1 - Taube, Robert A1 - Ganzert, Lars A1 - Grossart, Hans-Peter A1 - Gleixner, Gerd A1 - Premke, Katrin T1 - Organic matter quality structures benthic fatty acid patterns and the abundance of fungi and bacteria in temperate lakes JF - The science of the total environment : an international journal for scientific research into the environment and its relationship with man N2 - Benthic microbial communities (BMCs) play important roles in the carbon cycle of lakes, and benthic littoral zones in particular have been previously highlighted as biogeochemical hotspots. Dissolved organic matter (DOM) presents the major carbon pool in lakes, and although the effect of DOM composition on the pelagic microbial community composition is widely accepted, little is known about its effect on BMCs, particularly aquatic fungi. Therefore, we investigated the composition of benthic littoral microbial communities in twenty highly diverse lakes in northeast Germany. DOM quality was analyzed via size exclusion chromatography (SEC), fluorescence parallel factor analyses (PRAFACs) and UV-Vis spectroscopy. We determined the BMC composition and biomass using phospholipid-derived fatty acids (PLFA) and extended the interpretation to the analysis of fungi by applying a Bayesian mixed model. We present evidence that the quality of DOM structures the BMCs, which are dominated by heterotrophic bacteria and show low fungal biomass. The fungal biomass increases when the DOM pool is processed by microorganisms of allochthonous origin, whereas the opposite is true for bacteria. KW - PLFA KW - PARAFAC KW - Size exclusion chromatography (SEC) KW - Aquatic fungi KW - Stable isotopes KW - FASTAR Y1 - 2017 U6 - https://doi.org/10.1016/j.scitotenv.2017.07.256 SN - 0048-9697 SN - 1879-1026 VL - 610 SP - 469 EP - 481 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Perkins, Anita K. A1 - Ganzert, Lars A1 - Rojas-Jimenez, Keilor A1 - Fonvielle, Jeremy Andre A1 - Hose, Grant C. A1 - Grossart, Hans-Peter T1 - Highly diverse fungal communities in carbon-rich aquifers of two contrasting lakes in Northeast Germany JF - Fungal ecology N2 - Fungi are an important component of microbial communities and are well known for their ability to decompose refractory, highly polymeric organic matter. In soils and aquatic systems, fungi play an important role in carbon processing, however, their diversity, community structure and function as well as ecological role, particularly in groundwater, are poorly studied. The aim of this study was to examine the fungal community composition, diversity and function in groundwater from 16 boreholes located in the vicinity of two lakes in NE Germany that are characterized by contrasting trophic status. The analysis of 28S rRNA gene sequences amplified from the groundwater revealed high fungal diversity arid clear differences in community structure between the aquifers. Most sequences were assigned to Ascomycota and Basidiomycota, but members of Chytridiomycota, Cryptomycota, Zygomycota, Blastocladiomycota, Glomeromycota and Neocallimastigomycota were also detected. In addition, 27 species of fungi were successfully isolated from the groundwater samples and tested for their ability to decompose complex organic polymers - the predominant carbon source in the groundwater. Most isolates showed positive activities for at least one of the tested polymer types, with three strains, belonging to the genera Gibberella, Isaria and Cadophora, able to decompose all tested substrates. Our results highlight the high diversity of fungi in groundwater, and point to their important ecological role in breaking down highly polymeric organic matter in these isolated microbial habitats. (C) 2019 Elsevier Ltd and British Mycological Society. All rights reserved. KW - Groundwater KW - Aquatic fungi KW - DOC KW - CDOM KW - Aquifers KW - Humic acids Y1 - 2019 U6 - https://doi.org/10.1016/j.funeco.2019.04.004 SN - 1754-5048 SN - 1878-0083 VL - 41 SP - 116 EP - 125 PB - Elsevier CY - Oxford ER -