TY - JOUR A1 - Heinrich, Ingo A1 - Balanzategui, Daniel A1 - Bens, Oliver A1 - Blasch, Gerald A1 - Blume, Theresa A1 - Boettcher, Falk A1 - Borg, Erik A1 - Brademann, Brian A1 - Brauer, Achim A1 - Conrad, Christopher A1 - Dietze, Elisabeth A1 - Dräger, Nadine A1 - Fiener, Peter A1 - Gerke, Horst H. A1 - Güntner, Andreas A1 - Heine, Iris A1 - Helle, Gerhard A1 - Herbrich, Marcus A1 - Harfenmeister, Katharina A1 - Heussner, Karl-Uwe A1 - Hohmann, Christian A1 - Itzerott, Sibylle A1 - Jurasinski, Gerald A1 - Kaiser, Knut A1 - Kappler, Christoph A1 - Koebsch, Franziska A1 - Liebner, Susanne A1 - Lischeid, Gunnar A1 - Merz, Bruno A1 - Missling, Klaus Dieter A1 - Morgner, Markus A1 - Pinkerneil, Sylvia A1 - Plessen, Birgit A1 - Raab, Thomas A1 - Ruhtz, Thomas A1 - Sachs, Torsten A1 - Sommer, Michael A1 - Spengler, Daniel A1 - Stender, Vivien A1 - Stüve, Peter A1 - Wilken, Florian T1 - Interdisciplinary Geo-ecological Research across Time Scales in the Northeast German Lowland Observatory (TERENO-NE) JF - Vadose zone journal N2 - The Northeast German Lowland Observatory (TERENO-NE) was established to investigate the regional impact of climate and land use change. TERENO-NE focuses on the Northeast German lowlands, for which a high vulnerability has been determined due to increasing temperatures and decreasing amounts of precipitation projected for the coming decades. To facilitate in-depth evaluations of the effects of climate and land use changes and to separate the effects of natural and anthropogenic drivers in the region, six sites were chosen for comprehensive monitoring. In addition, at selected sites, geoarchives were used to substantially extend the instrumental records back in time. It is this combination of diverse disciplines working across different time scales that makes the observatory TERENO-NE a unique observation platform. We provide information about the general characteristics of the observatory and its six monitoring sites and present examples of interdisciplinary research activities at some of these sites. We also illustrate how monitoring improves process understanding, how remote sensing techniques are fine-tuned by the most comprehensive ground-truthing site DEMMIN, how soil erosion dynamics have evolved, how greenhouse gas monitoring of rewetted peatlands can reveal unexpected mechanisms, and how proxy data provides a long-term perspective of current ongoing changes. Y1 - 2018 U6 - https://doi.org/10.2136/vzj2018.06.0116 SN - 1539-1663 VL - 17 IS - 1 PB - Soil Science Society of America CY - Madison ER - TY - JOUR A1 - Bronstert, Axel A1 - Creutzfeldt, Benjamin A1 - Gräff, Thomas A1 - Hajnsek, Irena A1 - Heistermann, Maik A1 - Itzerott, Sibylle A1 - Jagdhuber, Thomas A1 - Kneis, David A1 - Lueck, Erika A1 - Reusser, Dominik A1 - Zehe, Erwin T1 - Potentials and constraints of different types of soil moisture observations for flood simulations in headwater catchments JF - Natural hazards : journal of the International Society for the Prevention and Mitigation of Natural Hazards N2 - Flood generation in mountainous headwater catchments is governed by rainfall intensities, by the spatial distribution of rainfall and by the state of the catchment prior to the rainfall, e. g. by the spatial pattern of the soil moisture, groundwater conditions and possibly snow. The work presented here explores the limits and potentials of measuring soil moisture with different methods and in different scales and their potential use for flood simulation. These measurements were obtained in 2007 and 2008 within a comprehensive multi-scale experiment in the Weisseritz headwater catchment in the Ore-Mountains, Germany. The following technologies have been applied jointly thermogravimetric method, frequency domain reflectometry (FDR) sensors, spatial time domain reflectometry (STDR) cluster, ground-penetrating radar (GPR), airborne polarimetric synthetic aperture radar (polarimetric SAR) and advanced synthetic aperture radar (ASAR) based on the satellite Envisat. We present exemplary soil measurement results, with spatial scales ranging from point scale, via hillslope and field scale, to the catchment scale. Only the spatial TDR cluster was able to record continuous data. The other methods are limited to the date of over-flights (airplane and satellite) or measurement campaigns on the ground. For possible use in flood simulation, the observation of soil moisture at multiple scales has to be combined with suitable hydrological modelling, using the hydrological model WaSiM-ETH. Therefore, several simulation experiments have been conducted in order to test both the usability of the recorded soil moisture data and the suitability of a distributed hydrological model to make use of this information. The measurement results show that airborne-based and satellite-based systems in particular provide information on the near-surface spatial distribution. However, there are still a variety of limitations, such as the need for parallel ground measurements (Envisat ASAR), uncertainties in polarimetric decomposition techniques (polarimetric SAR), very limited information from remote sensing methods about vegetated surfaces and the non-availability of continuous measurements. The model experiments showed the importance of soil moisture as an initial condition for physically based flood modelling. However, the observed moisture data reflect the surface or near-surface soil moisture only. Hence, only saturated overland flow might be related to these data. Other flood generation processes influenced by catchment wetness in the subsurface such as subsurface storm flow or quick groundwater drainage cannot be assessed by these data. One has to acknowledge that, in spite of innovative measuring techniques on all spatial scales, soil moisture data for entire vegetated catchments are still today not operationally available. Therefore, observations of soil moisture should primarily be used to improve the quality of continuous, distributed hydrological catchment models that simulate the spatial distribution of moisture internally. Thus, when and where soil moisture data are available, they should be compared with their simulated equivalents in order to improve the parameter estimates and possibly the structure of the hydrological model. KW - Soil moisture KW - Remote sensing KW - Hydrological modelling KW - Flood forecasting KW - Soil moisture measurement comparison Y1 - 2012 U6 - https://doi.org/10.1007/s11069-011-9874-9 SN - 0921-030X SN - 1573-0840 VL - 60 IS - 3 SP - 879 EP - 914 PB - Springer CY - New York ER - TY - JOUR A1 - Förster, Saskia A1 - Kaden, Klaus A1 - Förster, Michael A1 - Itzerott, Sibylle T1 - Crop type mapping using spectral-temporal profiles and phenological information JF - Computers and electronics in agriculture N2 - Spatially explicit multi-year crop information is required for many environmental applications. The study presented here proposes a hierarchical classification approach for per-plot crop type identification that is based on spectral-temporal profiles and accounts for deviations from the average growth stage timings by incorporating agro-meteorological information in the classification process. It is based on the fact that each crop type has a distinct seasonal spectral behavior and that the weather may accelerate or delay crop development. The classification approach was applied to map 12 crop types in a 14,000 km(2) catchment area in Northeast Germany for several consecutive years. An accuracy assessment was performed and compared to those of a maximum likelihood classification. The 7.1% lower overall classification accuracy of the spectral-temporal profiles approach may be justified by its independence of ground truth data. The results suggest that the number and timing of image acquisition is crucial to distinguish crop types. The increasing availability of optical imagery offering a high temporal coverage and a spatial resolution suitable for per-plot crop type mapping will facilitate the continuous refining of the spectral-temporal profiles for common crop types and different agro-regions and is expected to improve the classification accuracy of crop type maps using these profiles. KW - Crop type mapping KW - NDVI temporal profiles KW - Multi-temporal KW - Phenological correction KW - Agro-meteorological data Y1 - 2012 U6 - https://doi.org/10.1016/j.compag.2012.07.015 SN - 0168-1699 VL - 89 IS - 32 SP - 30 EP - 40 PB - Elsevier CY - Oxford ER - TY - BOOK A1 - Ebert, Beatrix A1 - Itzerott, Sibylle A1 - Kaden, Klaus T1 - Räumliche Unterschiede im Wassertransfer (Boden - Pflanze - Atmosphäre) in Niederungen des mitteleuropäischen Binnentiefland - Zwischenbericht 1994 Y1 - 1995 PB - Univ. CY - Potsdam ER - TY - JOUR A1 - Kaden, Klaus A1 - Itzerott, Sibylle A1 - Zebisch, Marc A1 - Fritsch, Uta T1 - Räumliche Unterschiede im Wassertransfer (Boden - Pflanze - Atmosphäre) in Niederungen des mitteleuropäischen Binnentieflandes JF - Potsdamer geographische Forschungen Y1 - 1999 SN - 0940-9688 VL - 18 PB - Selbstverl. der Institute für Geographie und Geoökologie CY - Potsdam ER - TY - JOUR A1 - Burkart, Michael A1 - Itzerott, Sibylle A1 - Zebisch, Marc T1 - Classification of vegetation by chronosequences of NDVI from remote sensing and field data : the example of Uvs Nuur basin Y1 - 2000 ER - TY - JOUR A1 - Itzerott, Sibylle A1 - Kaden, Klaus T1 - Modellierung der flächenhaften Verdunstung im Gebiet der Unteren Havel Y1 - 2000 ER - TY - JOUR A1 - Jessel, Beate A1 - Lahmer, Werner A1 - Itzerott, Sibylle A1 - Pfützner, Bernhard T1 - Management in the Havel river basin : building up decision tools for spatial planning Y1 - 2003 ER - TY - JOUR A1 - Itzerott, Sibylle A1 - Müller, D. A1 - Kaden, Klaus T1 - Klassifikation agrarischer Nutzungen unter Verwendung spektraler Normkurven Y1 - 2004 ER -