TY - JOUR A1 - Wurzbacher, Christian A1 - Attermeyer, Katrin A1 - Kettner, Marie Therese A1 - Flintrop, Clara A1 - Warthmann, Norman A1 - Hilt, Sabine A1 - Grossart, Hans-Peter A1 - Monaghan, Michael T. T1 - DNA metabarcoding of unfractionated water samples relates phyto-, zoo- and bacterioplankton dynamics and reveals a single-taxon bacterial bloom JF - Environmental microbiology reports N2 - Most studies of aquatic plankton focus on either macroscopic or microbial communities, and on either eukaryotes or prokaryotes. This separation is primarily for methodological reasons, but can overlook potential interactions among groups. Here we tested whether DNA metabarcoding of unfractionated water samples with universal primers could be used to qualitatively and quantitatively study the temporal dynamics of the total plankton community in a shallow temperate lake. Significant changes in the relative proportions of normalized sequence reads of eukaryotic and prokaryotic plankton communities over a 3-month period in spring were found. Patterns followed the same trend as plankton estimates measured using traditional microscopic methods. The bloom of a conditionally rare bacterial taxon belonging to Arcicella was characterized, which rapidly came to dominate the whole lake ecosystem and would have remained unnoticed without metabarcoding. The data demonstrate the potential of universal DNA metabarcoding applied to unfractionated samples for providing a more holistic view of plankton communities. Y1 - 2017 U6 - https://doi.org/10.1111/1758-2229.12540 SN - 1758-2229 VL - 9 SP - 383 EP - 388 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Svanys, Algirdas A1 - Eigemann, Falk A1 - Großart, Hans-Peter A1 - Hilt, Sabine T1 - Microcystins do not necessarily lower the sensitivity of Microcystis aeruginosa to tannic acid JF - FEMS microbiology letters N2 - Different phytoplankton strains have been shown to possess varying sensitivities towards macrophyte allelochemicals, yet the reasons for this are largely unknown. To test whether microcystin (MC) is responsible for strain-specific sensitivities of Microcystis aeruginosa to macrophyte allelochemicals, we compared the sensitivity of 12 MC- and non-MC-producing M. aeruginosa strains, including an MC-deficient mutant and its wild type, to the polyphenolic allelochemical tannic acid (TA). Non-MC-producing strains showed a significantly higher sensitivity to TA than MC-producing strains, both in Chlorophyll a concentrations and quantum yields of photosystem II. In contrast, an MC-deficient mutant displayed a higher fitness against TA compared to its wild type. These results suggest that the resistance of M. aeruginosa to polyphenolic allelochemicals is not primarily related to MCs per se, but to other yet unknown protective mechanisms related to MCs. KW - allelopathy KW - Delta mcyB mutant KW - microcystin KW - Microcystis aeruginosa KW - tannic acid Y1 - 2016 U6 - https://doi.org/10.1093/femsle/fnv227 SN - 0378-1097 SN - 1574-6968 VL - 363 SP - 53 EP - 77 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Sachse, Rene A1 - Petzoldt, Thomas A1 - Blumstock, Maria A1 - Moreira, Santiago A1 - Paetzig, Marlene A1 - Ruecker, Jacqueline A1 - Janse, Jan H. A1 - Mooij, Wolf M. A1 - Hilt, Sabine T1 - Extending one-dimensional models for deep lakes to simulate the impact of submerged macrophytes on water quality JF - Environmental modelling & software with environment data news N2 - Submerged macrophytes can stabilise clear water conditions in shallow lakes. However, many existing models for deep lakes neglect their impact. Here, we tested the hypothesis that submerged macrophytes can affect the water clarity in deep lakes. A one-dimensional, vertically resolved macrophyte model was developed based on PCLake and coupled to SALMO-1D and GOTM hydrophysics and validated against field data. Validation showed good coherence in dynamic growth patterns and colonisation depths. In our simulations the presence of submerged macrophytes resulted in up to 50% less phytoplankton biomass in the shallowest simulated lake (11 m) and still 15% less phytoplankton was predicted in 100 m deep oligotrophic lakes. Nutrient loading, lake depth, and lake shape had a strong influence on macrophyte effects. Nutrient competition was found to be the strongest biological interaction. Despite a number of limitations, the derived dynamic lake model suggests significant effects of submerged macrophytes on deep lake water quality. (C) 2014 Elsevier Ltd. All rights reserved. KW - Lake model KW - Macrophytes KW - Water quality Y1 - 2014 U6 - https://doi.org/10.1016/j.envsoft.2014.05.023 SN - 1364-8152 SN - 1873-6726 VL - 61 SP - 410 EP - 423 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Périllon, Cécile A1 - Pöschke, Franziska A1 - Lewandowski, Jörg A1 - Hupfer, Michael A1 - Hilt, Sabine T1 - Stimulation of epiphyton growth by lacustrine groundwater discharge to an oligo-mesotrophic hard-water lake JF - Freshwater Science N2 - Periphyton is a major contributor to aquatic primary production and often competes with phytoplankton and submerged macrophytes for resources. In nutrient-limited environments, mobilization of sediment nutrients by groundwater can significantly affect periphyton (including epiphyton) development in shallow littoral zones and may affect other lake primary producers. We hypothesized that epiphyton growth in the littoral zone of temperate oligomesotrophic hard-water lakes could be stimulated by nutrient (especially P) supply via lacustrine groundwater discharge (LGD). We compared the dry mass, chlorophyll a (chl a), and nutrient content of epiphyton grown on artificial substrates at different sites in a groundwater-fed lake and in experimental chambers with and without LGD. During the spring-summer periods, epiphyton accumulated more biomass, especially algae, in littoral LGD sites and in experimental chambers with LGD compared to controls without LGD. Epiphyton chl a accumulation reached up to 46 mg chl a/m(2) after 4 wk when exposed to LGD, compared to a maximum of 23 mg chl a/m(2) at control (C) sites. In the field survey, differences in epiphyton biomass between LGD and C sites were most pronounced at the end of summer, when epilimnetic P concentrations were lowest and epiphyton C:P ratios indicated P limitation. Groundwater-borne P may have facilitated epiphyton growth on macrophytes and periphyton growth on littoral sediments. Epiphyton stored up to 35 mg P/m(2) in 4 wk (which corresponds to 13% of the total P content of the littoral waters), preventing its use by phytoplankton, and possibly contributing to the stabilization of a clear-water state. However, promotion of epiphyton growth by LGD may have contributed to an observed decline in macrophyte abundance caused by epiphyton shading and a decreased resilience of small charophytes to drag forces in shallow littoral areas of the studied lake in recent decades. KW - lacustrine groundwater discharge KW - periphyton KW - littoral KW - nutrients KW - benthic KW - macrophytes KW - seepage Y1 - 2017 U6 - https://doi.org/10.1086/692832 SN - 2161-9549 SN - 2161-9565 VL - 36 SP - 555 EP - 570 PB - Univ. of Chicago Press CY - Chicago ER - TY - JOUR A1 - Périllon, Cécile A1 - Hilt, Sabine T1 - Groundwater influence differentially affects periphyton and macrophyte production in lakes JF - Hydrobiologia : acta hydrobiologica, hydrographica, limnologica et protistologica N2 - Groundwater influx can significantly contribute to nutrient and carbon budgets of lakes, and its influence is the strongest in littoral areas dominated by macrophytes and periphyton. We have reviewed the effects of groundwater-borne nitrogen and phosphorus and dissolved inorganic and organic carbon (DIC, DOC) on these benthic primary producers in lakes. We develop a hypothesis for groundwater effects including the less studied impacts of periphyton shading on macrophytes. Groundwater-borne nutrients and DIC promote both macrophytes and periphyton. Direct studies on groundwater-borne DOC effects are lacking, but coloured DOC contributes to light attenuation and thus can restrict the growth of benthic primary producers. We predict that above certain threshold levels of nutrient influx by groundwater, periphyton and macrophyte biomass should decline owing to shading by phytoplankton and periphyton, respectively. However, because of their higher light requirements, those thresholds should be lower for macrophytes. For macrophytes, a threshold level is also predicted for a shift from DIC limitation to light limitation. Differences in light requirements are expected to result in lower thresholds of DOC loading for declines of macrophytes than periphyton. KW - Dissolved inorganic carbon KW - Dissolved organic carbon KW - Light KW - Macrophytes KW - Nutrients KW - Periphyton Y1 - 2016 U6 - https://doi.org/10.1007/s10750-015-2485-9 SN - 0018-8158 SN - 1573-5117 VL - 778 SP - 91 EP - 103 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Premke, Katrin A1 - Attermeyer, Katrin A1 - Augustin, Jürgen A1 - Cabezas, Alvaro A1 - Casper, Peter A1 - Deumlich, Detlef A1 - Gelbrecht, Jörg A1 - Gerke, Horst H. A1 - Gessler, Arthur A1 - Großart, Hans-Peter A1 - Hilt, Sabine A1 - Hupfer, Michael A1 - Kalettka, Thomas A1 - Kayler, Zachary A1 - Lischeid, Gunnar A1 - Sommer, Michael A1 - Zak, Dominik T1 - The importance of landscape diversity for carbon fluxes at the landscape level: small-scale heterogeneity matters JF - Wiley Interdisciplinary Reviews : Water N2 - Landscapes can be viewed as spatially heterogeneous areas encompassing terrestrial and aquatic domains. To date, most landscape carbon (C) fluxes have been estimated by accounting for terrestrial ecosystems, while aquatic ecosystems have been largely neglected. However, a robust assessment of C fluxes on the landscape scale requires the estimation of fluxes within and between both landscape components. Here, we compiled data from the literature on C fluxes across the air–water interface from various landscape components. We simulated C emissions and uptake for five different scenarios which represent a gradient of increasing spatial heterogeneity within a temperate young moraine landscape: (I) a homogeneous landscape with only cropland and large lakes; (II) separation of the terrestrial domain into cropland and forest; (III) further separation into cropland, forest, and grassland; (IV) additional division of the aquatic area into large lakes and peatlands; and (V) further separation of the aquatic area into large lakes, peatlands, running waters, and small water bodies These simulations suggest that C fluxes at the landscape scale might depend on spatial heterogeneity and landscape diversity, among other factors. When we consider spatial heterogeneity and diversity alone, small inland waters appear to play a pivotal and previously underestimated role in landscape greenhouse gas emissions that may be regarded as C hot spots. Approaches focusing on the landscape scale will also enable improved projections of ecosystems’ responses to perturbations, e.g., due to global change and anthropogenic activities, and evaluations of the specific role individual landscape components play in regional C fluxes. WIREs Water 2016, 3:601–617. doi: 10.1002/wat2.1147 Y1 - 2016 U6 - https://doi.org/10.1002/wat2.1147 SN - 2049-1948 SN - 2049-1948 VL - 3 SP - 601 EP - 617 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Perillon, Cecile A1 - van de Weyer, Klaus A1 - Päzolt, Jens A1 - Kasprzak, Peter A1 - Hilt, Sabine T1 - Changes in submerged macrophyte colonization in shallow areas of an oligo-mesotrophic lake and the potential role of groundwater JF - Limnologica : ecology and management of inland waters N2 - Groundwater influx can significantly contribute to nutrient budgets of lakes and its influence is strongest in shallow littoral areas. In oligo-or mesotrophic systems, additional nutrient supply by groundwater influx may affect benthic primary producers and their interactions. Potential changes can be expected in community composition, biomass, stoichiometry and interactions between submerged macrophytes and epiphyton. KW - Seepage KW - Eutrophication KW - Charophytes KW - Periphyton KW - Nutrients KW - Littoral Y1 - 2018 U6 - https://doi.org/10.1016/j.limno.2017.03.002 SN - 0075-9511 SN - 1873-5851 VL - 68 SP - 168 EP - 176 PB - Elsevier CY - Jena ER - TY - JOUR A1 - Mehner, Thomas A1 - Lischke, Betty A1 - Scharnweber, Inga Kristin A1 - Attermeyer, Katrin A1 - Brothers, Soren A1 - Gaedke, Ursula A1 - Hilt, Sabine A1 - Brucet, Sandra T1 - Empirical correspondence between trophic transfer efficiency in freshwater food webs and the slope of their size spectra JF - Ecology : a publication of the Ecological Society of America N2 - The density of organisms declines with size, because larger organisms need more energy than smaller ones and energetic losses occur when larger organisms feed on smaller ones. A potential expression of density-size distributions are Normalized Biomass Size Spectra (NBSS), which plot the logarithm of biomass independent of taxonomy within bins of logarithmic organismal size, divided by the bin width. Theoretically, the NBSS slope of multi-trophic communities is exactly - 1.0 if the trophic transfer efficiency (TTE, ratio of production rates between adjacent trophic levels) is 10% and the predator-prey mass ratio (PPMR) is fixed at 10(4). Here we provide evidence from four multi-trophic lake food webs that empirically estimated TTEs correspond to empirically estimated slopes of the respective community NBSS. Each of the NBSS considered pelagic and benthic organisms spanning size ranges from bacteria to fish, all sampled over three seasons in 1 yr. The four NBSS slopes were significantly steeper than -1.0 (range -1.14 to -1.19, with 95% CIs excluding -1). The corresponding average TTEs were substantially lower than 10% in each of the four food webs (range 1.0% to 3.6%, mean 1.85%). The overall slope merging all biomass-size data pairs from the four systems (-1.17) was almost identical to the slope predicted from the arithmetic mean TTE of the four food webs (-1.18) assuming a constant PPMR of 10(4). Accordingly, our empirical data confirm the theoretically predicted quantitative relationship between TTE and the slope of the biomass-size distribution. Furthermore, we show that benthic and pelagic organisms can be merged into a community NBSS, but future studies have yet to explore potential differences in habitat-specific TTEs and PPMRs. We suggest that community NBSS may provide valuable information on the structure of food webs and their energetic pathways, and can result in improved accuracy of TTE-estimates. KW - energetic equivalence rule KW - metabolic theory of ecology KW - multi-trophic communities KW - normalized biomass size spectra KW - pelagic and benthic lake habitats KW - size of organisms Y1 - 2018 U6 - https://doi.org/10.1002/ecy.2347 SN - 0012-9658 SN - 1939-9170 VL - 99 IS - 6 SP - 1463 EP - 1472 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Lischke, Betty A1 - Weithoff, Guntram A1 - Wickham, Stephen A. A1 - Attermeyer, Katrin A1 - Großart, Hans-Peter A1 - Scharnweber, Inga Kristin A1 - Hilt, Sabine A1 - Gaedke, Ursula T1 - Large biomass of small feeders: ciliates may dominate herbivory in eutrophic lakes JF - Journal of plankton research N2 - The importance of ciliates as herbivores and in biogeochemical cycles is increasingly recognized. An opportunity to observe the potential consequences of zooplankton dominated by ciliates arose when winter fish kills resulted in strong suppression of crustaceans by young planktivorous fish in two shallow lakes. On an annual average, ciliates made up 38-76% of the total zooplankton biomass in both lakes during two subsequent years. Consequently, ciliate biomass and their estimated grazing potential were extremely high compared with other lakes of various trophic states and depths. Grazing estimates based on abundance and size suggest that ciliates should have cleared the water column of small (<5 mu m) and intermediate (5-50 mu m) sized phytoplankton more than once a day. Especially, small feeders within the ciliates were important, likely exerting a strong top-down control on small phytoplankton. Particle-attached bacteria were presumably strongly suppressed by intermediate-sized ciliate feeders. In contrast to other lakes, large phytoplankton was proportionately very abundant. The phytoplankton community had a high evenness, which may be attributed to the feeding by numerous fast growing and selective ciliate species. Our study highlights ciliates as an important trophic link and adds to the growing awareness of the role of winter processes for plankton dynamics. KW - phytoplankton KW - crustaceans KW - rotifers KW - filtration rate KW - winter fish kill Y1 - 2016 U6 - https://doi.org/10.1093/plankt/fbv102 SN - 0142-7873 SN - 1464-3774 VL - 38 SP - 2 EP - 15 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Lischke, Betty A1 - Mehner, Thomas A1 - Hilt, Sabine A1 - Attermeyer, Katrin A1 - Brauns, Mario A1 - Brothers, Soren M. A1 - Grossart, Hans-Peter A1 - Koehler, Jan A1 - Scharnweber, Inga Kristin A1 - Gaedke, Ursula T1 - Benthic carbon is inefficiently transferred in the food webs of two eutrophic shallow lakes JF - Freshwater biology N2 - The sum of benthic autotrophic and bacterial production often exceeds the sum of pelagic autotrophic and bacterial production, and hence may contribute substantially to whole-lake carbon fluxes, especially in shallow lakes. Furthermore, both benthic and pelagic autotrophic and bacterial production are highly edible and of sufficient nutritional quality for animal consumers. We thus hypothesised that pelagic and benthic transfer efficiencies (ratios of production at adjacent trophic levels) in shallow lakes should be similar. We performed whole ecosystem studies in two shallow lakes (3.5ha, mean depth 2m), one with and one without submerged macrophytes, and quantified pelagic and benthic biomass, production and transfer efficiencies for bacteria, phytoplankton, epipelon, epiphyton, macrophytes, zooplankton, macrozoobenthos and fish. We expected higher transfer efficiencies in the lake with macrophytes, because these provide shelter and food for macrozoobenthos and may thus enable a more efficient conversion of basal production to consumer production. In both lakes, the majority of the whole-lake autotrophic and bacterial production was provided by benthic organisms, but whole-lake primary consumer production mostly relied on pelagic autotrophic and bacterial production. Consequently, transfer efficiency of benthic autotrophic and bacterial production to macrozoobenthos production was an order of magnitude lower than the transfer efficiency of pelagic autotrophic and bacterial production to rotifer and crustacean production. Between-lake differences in transfer efficiencies were minor. We discuss several aspects potentially causing the unexpectedly low benthic transfer efficiencies, such as the food quality of producers, pelagic-benthic links, oxygen concentrations in the deeper lake areas and additional unaccounted consumer production by pelagic and benthic protozoa and meiobenthos at intermediate or top trophic levels. None of these processes convincingly explain the large differences between benthic and pelagic transfer efficiencies. Our data indicate that shallow eutrophic lakes, even with a major share of autotrophic and bacterial production in the benthic zone, can function as pelagic systems with respect to primary consumer production. We suggest that the benthic autotrophic production was mostly transferred to benthic bacterial production, which remained in the sediments, potentially cycling internally in a similar way to what has previously been described for the microbial loop in pelagic habitats. Understanding the energetics of whole-lake food webs, including the fate of the substantial benthic bacterial production, which is either mineralised at the sediment surface or permanently buried, has important implications for regional and global carbon cycling. KW - bacterial production KW - benthic food chain KW - pelagic food chain KW - quantitative food webs KW - trophic transfer efficiency Y1 - 2017 U6 - https://doi.org/10.1111/fwb.12979 SN - 0046-5070 SN - 1365-2427 VL - 62 SP - 1693 EP - 1706 PB - Wiley CY - Hoboken ER -