TY - JOUR A1 - Vogel, Thomas A1 - Giese, Holger T1 - Model-Driven engineering of self-adaptive software with EUREMA JF - ACM transactions on autonomous and adaptive systems N2 - The development of self-adaptive software requires the engineering of an adaptation engine that controls the underlying adaptable software by feedback loops. The engine often describes the adaptation by runtime models representing the adaptable software and by activities such as analysis and planning that use these models. To systematically address the interplay between runtime models and adaptation activities, runtime megamodels have been proposed. A runtime megamodel is a specific model capturing runtime models and adaptation activities. In this article, we go one step further and present an executable modeling language for ExecUtable RuntimE MegAmodels (EUREMA) that eases the development of adaptation engines by following a model-driven engineering approach. We provide a domain-specific modeling language and a runtime interpreter for adaptation engines, in particular feedback loops. Megamodels are kept alive at runtime and by interpreting them, they are directly executed to run feedback loops. Additionally, they can be dynamically adjusted to adapt feedback loops. Thus, EUREMA supports development by making feedback loops explicit at a higher level of abstraction and it enables solutions where multiple feedback loops interact or operate on top of each other and self-adaptation co-exists with offline adaptation for evolution. KW - Design KW - Languages Model-driven engineering KW - modeling language KW - models at runtime KW - model interpreter KW - self-adaptive software KW - feedback loops KW - layered architecture KW - software evolution Y1 - 2014 U6 - https://doi.org/10.1145/2555612 SN - 1556-4665 SN - 1556-4703 VL - 8 IS - 4 PB - Association for Computing Machinery CY - New York ER - TY - JOUR A1 - Seibel, Andreas A1 - Neumann, Stefan A1 - Giese, Holger T1 - Dynamic hierarchical mega models : comprehensive traceability and its efficient maintenance N2 - In the world of model-driven engineering (MDE) support for traceability and maintenance of traceability information is essential. On the one hand, classical traceability approaches for MDE address this need by supporting automated creation of traceability information on the model element level. On the other hand, global model management approaches manually capture traceability information on the model level. However, there is currently no approach that supports comprehensive traceability, comprising traceability information on both levels, and efficient maintenance of traceability information, which requires a high-degree of automation and scalability. In this article, we present a comprehensive traceability approach that combines classical traceability approaches for MDE and global model management in form of dynamic hierarchical mega models. We further integrate efficient maintenance of traceability information based on top of dynamic hierarchical mega models. The proposed approach is further outlined by using an industrial case study and by presenting an implementation of the concepts in form of a prototype. Y1 - 2010 UR - http://www.springerlink.com/content/109378 U6 - https://doi.org/10.1007/s10270-009-0146-z SN - 1619-1366 ER - TY - JOUR A1 - Schneider, Sven A1 - Maximova, Maria A1 - Sakizloglou, Lucas A1 - Giese, Holger T1 - Formal testing of timed graph transformation systems using metric temporal graph logic JF - International journal on software tools for technology transfer N2 - Embedded real-time systems generate state sequences where time elapses between state changes. Ensuring that such systems adhere to a provided specification of admissible or desired behavior is essential. Formal model-based testing is often a suitable cost-effective approach. We introduce an extended version of the formalism of symbolic graphs, which encompasses types as well as attributes, for representing states of dynamic systems. Relying on this extension of symbolic graphs, we present a novel formalism of timed graph transformation systems (TGTSs) that supports the model-based development of dynamic real-time systems at an abstract level where possible state changes and delays are specified by graph transformation rules. We then introduce an extended form of the metric temporal graph logic (MTGL) with increased expressiveness to improve the applicability of MTGL for the specification of timed graph sequences generated by a TGTS. Based on the metric temporal operators of MTGL and its built-in graph binding mechanics, we express properties on the structure and attributes of graphs as well as on the occurrence of graphs over time that are related by their inner structure. We provide formal support for checking whether a single generated timed graph sequence adheres to a provided MTGL specification. Relying on this logical foundation, we develop a testing framework for TGTSs that are specified using MTGL. Lastly, we apply this testing framework to a running example by using our prototypical implementation in the tool AutoGraph. KW - formal testing KW - typed attributed symbolic graphs KW - timed graph KW - transformation KW - graph conditions KW - metric temporal graph logic Y1 - 2021 U6 - https://doi.org/10.1007/s10009-020-00585-w SN - 1433-2779 SN - 1433-2787 VL - 23 IS - 3 SP - 411 EP - 488 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Maximova, Maria A1 - Giese, Holger A1 - Krause, Christian T1 - Probabilistic timed graph transformation systems JF - Journal of Logical and Algebraic Methods in Programming N2 - Today, software has become an intrinsic part of complex distributed embedded real-time systems. The next generation of embedded real-time systems will interconnect the today unconnected systems via complex software parts and the service-oriented paradigm. Due to these interconnections, the architecture of systems can be subject to changes at run-time, e.g. when dynamic binding of service end-points is employed or complex collaborations are established dynamically. However, suitable formalisms and techniques that allow for modeling and analysis of timed and probabilistic behavior of such systems as well as of their structure dynamics do not exist so far. To fill the identified gap, we propose Probabilistic Timed Graph Transformation Systems (PTGTSs) as a high-level description language that supports all the necessary aspects of structure dynamics, timed behavior, and probabilistic behavior. We introduce the formal model of PTGTSs in this paper as well as present and formally verify a mapping of models with finite state spaces to probabilistic timed automata (PTA) that allows to use the PRISM model checker to analyze PTGTS models with respect to PTCTL properties. (C) 2018 Elsevier Inc. All rights reserved. KW - Graph transformations KW - Probabilistic timed automata KW - PTCTL KW - PRISM model checker KW - HENSHIN Y1 - 2018 U6 - https://doi.org/10.1016/j.jlamp.2018.09.003 SN - 2352-2208 VL - 101 SP - 110 EP - 131 PB - Elsevier CY - New York ER - TY - JOUR A1 - Henkler, Stefan A1 - Oberthuer, Simon A1 - Giese, Holger A1 - Seibel, Andreas T1 - Model-driven runtime resource predictions for advanced mechatronic systems with dynamic data structures JF - Computer systems science and engineering N2 - The next generation of advanced mechatronic systems is expected to enhance their functionality and improve their performance by context-dependent behavior. Therefore, these systems require to represent information about their complex environment and changing sets of collaboration partners internally. This requirement is in contrast to the usually assumed static structures of embedded systems. In this paper, we present a model-driven approach which overcomes this situation by supporting dynamic data structures while still guaranteeing that valid worst-case execution times can be derived. It supports a flexible resource manager which avoids to operate with the prohibitive coarse worst-case boundaries but instead supports to run applications in different profiles which guarantee different resource requirements and put unused resources in a profile at other applications' disposal. By supporting the proper estimation of worst case execution time (WCET) and worst case number of iteration (WCNI) at runtime, we can further support to create new profiles, add or remove them at runtime in order to minimize the over-approximation of the resource consumption resulting from the dynamic data structures required for the outlined class of advanced systems. KW - Model-Driven Engineering KW - Safety Critical Systems KW - Dynamic Data Structures KW - Flexible Resource Manager KW - Runtime WCET Analysis Y1 - 2011 SN - 0267-6192 VL - 26 IS - 6 SP - 505 EP - 518 PB - IOP Publ. Ltd. CY - Leicester ER - TY - JOUR A1 - Hebig, Regina A1 - Giese, Holger T1 - On the complex nature of MDE evolution and its impact on changeability JF - Software and systems modeling KW - Model-driven engineering KW - Evolution KW - Empirical research Y1 - 2017 U6 - https://doi.org/10.1007/s10270-015-0464-2 SN - 1619-1366 SN - 1619-1374 VL - 16 SP - 333 EP - 356 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Giese, Holger A1 - Wagner, Robert T1 - From model transformation to incremental bidirectional model synchronization N2 - The model-driven software development paradigm requires that appropriate model transformations are applicable in different stages of the development process. The transformations have to consistently propagate changes between the different involved models and thus ensure a proper model synchronization. However, most approaches today do not fully support the requirements for model synchronization and focus only on classical one-way batch-oriented transformations. In this paper, we present our approach for an incremental model transformation which supports model synchronization. Our approach employs the visual, formal, and bidirectional transformation technique of triple graph grammars. Using this declarative specification formalism, we focus on the efficient execution of the transformation rules and how to achieve an incremental model transformation for synchronization purposes. We present an evaluation of our approach and demonstrate that due to the speedup for the incremental processing in the average case even larger models can be tackled. Y1 - 2009 UR - http://www.springerlink.com/content/109378 U6 - https://doi.org/10.1007/s10270-008-0089-9 SN - 1619-1366 ER - TY - JOUR A1 - Giese, Holger A1 - Hildebrandt, Stephan A1 - Lambers, Leen T1 - Bridging the gap between formal semantics and implementation of triple graph grammars JF - Software and systems modeling N2 - The correctness of model transformations is a crucial element for model-driven engineering of high-quality software. A prerequisite to verify model transformations at the level of the model transformation specification is that an unambiguous formal semantics exists and that the implementation of the model transformation language adheres to this semantics. However, for existing relational model transformation approaches, it is usually not really clear under which constraints particular implementations really conform to the formal semantics. In this paper, we will bridge this gap for the formal semantics of triple graph grammars (TGG) and an existing efficient implementation. While the formal semantics assumes backtracking and ignores non-determinism, practical implementations do not support backtracking, require rule sets that ensure determinism, and include further optimizations. Therefore, we capture how the considered TGG implementation realizes the transformation by means of operational rules, define required criteria, and show conformance to the formal semantics if these criteria are fulfilled. We further outline how static and runtime checks can be employed to guarantee these criteria. Y1 - 2014 U6 - https://doi.org/10.1007/s10270-012-0247-y SN - 1619-1366 SN - 1619-1374 VL - 13 IS - 1 SP - 273 EP - 299 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Giese, Holger A1 - Henkler, Stefan A1 - Hirsch, Martin T1 - A multi-paradigm approach supporting the modular execution of reconfigurable hybrid systems JF - Simulation : transactions of the Society for Modeling and Simulation International N2 - Advanced mechatronic systems have to integrate existing technologies from mechanical, electrical and software engineering. They must be able to adapt their structure and behavior at runtime by reconfiguration to react flexibly to changes in the environment. Therefore, a tight integration of structural and behavioral models of the different domains is required. This integration results in complex reconfigurable hybrid systems, the execution logic of which cannot be addressed directly with existing standard modeling, simulation, and code-generation techniques. We present in this paper how our component-based approach for reconfigurable mechatronic systems, MECHATRONIC UML, efficiently handles the complex interplay of discrete behavior and continuous behavior in a modular manner. In addition, its extension to even more flexible reconfiguration cases is presented. KW - code generation KW - hybrid systems KW - reconfigurable systems KW - simulation Y1 - 2011 U6 - https://doi.org/10.1177/0037549710366824 SN - 0037-5497 VL - 87 IS - 9 SP - 775 EP - 808 PB - Sage Publ. CY - London ER - TY - GEN A1 - Giese, Holger ED - Kouchnarenko, Olga ED - Khosravi, Ramtin T1 - Formal models and analysis for self-adaptive cyber-physical systems BT - (extended abstract) T2 - Lecture notes in computer science N2 - In this extended abstract, we will analyze the current challenges for the envisioned Self-Adaptive CPS. In addition, we will outline our results to approach these challenges with SMARTSOS [10] a generic approach based on extensions of graph transformation systems employing open and adaptive collaborations and models at runtime for trustworthy self-adaptation, self-organization, and evolution of the individual systems and the system-of-systems level taking the independent development, operation, management, and evolution of these systems into account. Y1 - 2017 SN - 978-3-319-57666-4 SN - 978-3-319-57665-7 U6 - https://doi.org/10.1007/978-3-319-57666-4_1 SN - 0302-9743 SN - 1611-3349 VL - 10231 SP - 3 EP - 9 PB - Springer CY - Cham ER -