TY - JOUR A1 - Klein, Markus A1 - Rosenberger, Elke T1 - The tunneling effect for a class of difference operators JF - Reviews in Mathematical Physics N2 - We analyze a general class of self-adjoint difference operators H-epsilon = T-epsilon + V-epsilon on l(2)((epsilon Z)(d)), where V-epsilon is a multi-well potential and v(epsilon) is a small parameter. We give a coherent review of our results on tunneling up to new sharp results on the level of complete asymptotic expansions (see [30-35]). Our emphasis is on general ideas and strategy, possibly of interest for a broader range of readers, and less on detailed mathematical proofs. The wells are decoupled by introducing certain Dirichlet operators on regions containing only one potential well. Then the eigenvalue problem for the Hamiltonian H-epsilon is treated as a small perturbation of these comparison problems. After constructing a Finslerian distance d induced by H-epsilon, we show that Dirichlet eigenfunctions decay exponentially with a rate controlled by this distance to the well. It follows with microlocal techniques that the first n eigenvalues of H-epsilon converge to the first n eigenvalues of the direct sum of harmonic oscillators on R-d located at several wells. In a neighborhood of one well, we construct formal asymptotic expansions of WKB-type for eigenfunctions associated with the low-lying eigenvalues of H-epsilon. These are obtained from eigenfunctions or quasimodes for the operator H-epsilon acting on L-2(R-d), via restriction to the lattice (epsilon Z)(d). Tunneling is then described by a certain interaction matrix, similar to the analysis for the Schrodinger operator (see [22]), the remainder is exponentially small and roughly quadratic compared with the interaction matrix. We give weighted l(2)-estimates for the difference of eigenfunctions of Dirichlet-operators in neighborhoods of the different wells and the associated WKB-expansions at the wells. In the last step, we derive full asymptotic expansions for interactions between two "wells" (minima) of the potential energy, in particular for the discrete tunneling effect. Here we essentially use analysis on phase space, complexified in the momentum variable. These results are as sharp as the classical results for the Schrodinger operator in [22]. KW - Semiclassical difference operator KW - tunneling KW - interaction matrix KW - asymptotic expansion KW - multi-well potential KW - Finsler distance KW - Agmon estimates Y1 - 2018 U6 - https://doi.org/10.1142/S0129055X18300029 SN - 0129-055X SN - 1793-6659 VL - 30 IS - 4 PB - World Scientific CY - Singapore ER -