TY - JOUR A1 - Marschall, Raphael A1 - Skorov, Yuri A1 - Zakharov, Vladimir A1 - Rezac, Ladislav A1 - Gerig, Selina-Barbara A1 - Christou, Chariton A1 - Dadzie, S. Kokou A1 - Migliorini, Alessandra A1 - Rinaldi, Giovanna A1 - Agarwal, Jessica A1 - Vincent, Jean-Baptiste A1 - Kappel, David T1 - Cometary comae-surface links the physics of gas and dust from the surface to a spacecraft JF - Space science reviews N2 - A comet is a highly dynamic object, undergoing a permanent state of change. These changes have to be carefully classified and considered according to their intrinsic temporal and spatial scales. The Rosetta mission has, through its contiguous in-situ and remote sensing coverage of comet 67P/Churyumov-Gerasimenko (hereafter 67P) over the time span of August 2014 to September 2016, monitored the emergence, culmination, and winding down of the gas and dust comae. This provided an unprecedented data set and has spurred a large effort to connect in-situ and remote sensing measurements to the surface. In this review, we address our current understanding of cometary activity and the challenges involved when linking comae data to the surface. We give the current state of research by describing what we know about the physical processes involved from the surface to a few tens of kilometres above it with respect to the gas and dust emission from cometary nuclei. Further, we describe how complex multidimensional cometary gas and dust models have developed from the Halley encounter of 1986 to today. This includes the study of inhomogeneous outgassing and determination of the gas and dust production rates. Additionally, the different approaches used and results obtained to link coma data to the surface will be discussed. We discuss forward and inversion models and we describe the limitations of the respective approaches. The current literature suggests that there does not seem to be a single uniform process behind cometary activity. Rather, activity seems to be the consequence of a variety of erosion processes, including the sublimation of both water ice and more volatile material, but possibly also more exotic processes such as fracture and cliff erosion under thermal and mechanical stress, sub-surface heat storage, and a complex interplay of these processes. Seasons and the nucleus shape are key factors for the distribution and temporal evolution of activity and imply that the heliocentric evolution of activity can be highly individual for every comet, and generalisations can be misleading. KW - comets KW - coma KW - gas KW - dust KW - dynamics KW - modelling KW - inversion Y1 - 2020 U6 - https://doi.org/10.1007/s11214-020-00744-0 SN - 0038-6308 SN - 1572-9672 VL - 216 IS - 8 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Perovic, Milena A1 - Zeininger, Lukas A1 - Oschatz, Martin T1 - Immobilization of gold-on-carbon catalysts onto perfluorocarbon emulsion droplets to promote oxygen delivery in aqueous phase (D)-glucose oxidation JF - ChemCatChem N2 - The catalytic activity of metal nanoparticles (NPs) supported on porous supports can be controlled by various factors, such as NPs size, shape, or dispersivity, as well as their interaction with the support or the properties of the support material itself. However, these intrinsic properties are not solely responsible for the catalytic behavior of the overall reaction system, as the local environment and surface coverage of the catalyst with reactants, products, intermediates and other invloved species often play a crucial role in catalytic processes as well. Their contribution can be particularly critical in liquid-phase reactions with gaseous reactants that often suffer from low solubiltiy. One example is (D)-glucose oxidation with molecular oxygen over gold nanoparticles supported on porous carbons. The possibility to promote oxygen delivery in such aqueous phase oxidation reactions via the immobilization of heterogenous catalysts onto the interface of perfluorocarbon emulsion droplets is reported here. Gold-on-carbon catalyst particles can stabilize perfluorocarbon droplets in the aqueous phase and the local concentration of the oxidant in the surroundings of the gold nanoparticles accelerates the rate-limiting step of the reaction. Consequently, the reaction rate of a system with the optimal volume fraction of fluorocarbon is higher than a reference emulsion system without fluorocarbon, and the effect is observed even without additional oxygen supply. KW - perfluorocarbon emulsion KW - glucose oxidation KW - porous carbon KW - gas KW - solubility KW - pickering emulsion KW - liquid-phase catalysis Y1 - 2020 U6 - https://doi.org/10.1002/cctc.202001590 SN - 1867-3880 SN - 1867-3899 VL - 13 IS - 1 SP - 196 EP - 201 PB - Wiley-VCH CY - Weinheim ER -