TY - JOUR A1 - Nwosu, Ebuka Canisius A1 - Roeser, Patricia Angelika A1 - Yang, Sizhong A1 - Ganzert, Lars A1 - Dellwig, Olaf A1 - Pinkerneil, Sylvia A1 - Brauer, Achim A1 - Dittmann, Elke A1 - Wagner, Dirk A1 - Liebner, Susanne T1 - From water into sediment-tracing freshwater cyanobacteria via DNA analyses JF - Microorganisms : open access journal N2 - Sedimentary ancient DNA-based studies have been used to probe centuries of climate and environmental changes and how they affected cyanobacterial assemblages in temperate lakes. Due to cyanobacteria containing potential bloom-forming and toxin-producing taxa, their approximate reconstruction from sediments is crucial, especially in lakes lacking long-term monitoring data. To extend the resolution of sediment record interpretation, we used high-throughput sequencing, amplicon sequence variant (ASV) analysis, and quantitative PCR to compare pelagic cyanobacterial composition to that in sediment traps (collected monthly) and surface sediments in Lake Tiefer See. Cyanobacterial composition, species richness, and evenness was not significantly different among the pelagic depths, sediment traps and surface sediments (p > 0.05), indicating that the cyanobacteria in the sediments reflected the cyanobacterial assemblage in the water column. However, total cyanobacterial abundances (qPCR) decreased from the metalimnion down the water column. The aggregate-forming (Aphanizomenon) and colony-forming taxa (Snowella) showed pronounced sedimentation. In contrast, Planktothrix was only very poorly represented in sediment traps (meta- and hypolimnion) and surface sediments, despite its highest relative abundance at the thermocline (10 m water depth) during periods of lake stratification (May-October). We conclude that this skewed representation in taxonomic abundances reflects taphonomic processes, which should be considered in future DNA-based paleolimnological investigations. KW - Aphanizomenon KW - Planktothrix KW - Snowella KW - cyanobacteria sedimentation KW - lake monitoring KW - sedimentary ancient DNA KW - sediment traps KW - environmental reconstruction Y1 - 2021 U6 - https://doi.org/10.3390/microorganisms9081778 SN - 2076-2607 VL - 9 IS - 8 PB - MDPI CY - Basel ER - TY - JOUR A1 - Nwosu, Ebuka Canisius A1 - Brauer, Achim A1 - Kaiser, Jérôme A1 - Horn, Fabian A1 - Wagner, Dirk A1 - Liebner, Susanne T1 - Evaluating sedimentary DNA for tracing changes in cyanobacteria dynamics from sediments spanning the last 350 years of Lake Tiefer See, NE Germany JF - Journal of paleolimnology N2 - Since the beginning of the Anthropocene, lacustrine biodiversity has been influenced by climate change and human activities. These factors advance the spread of harmful cyanobacteria in lakes around the world, which affects water quality and impairs the aquatic food chain. In this study, we assessed changes in cyanobacterial community dynamics via sedimentary DNA (sedaDNA) from well-dated lake sediments of Lake Tiefer See, which is part of the Klocksin Lake Chain spanning the last 350 years. Our diversity and community analysis revealed that cyanobacterial communities form clusters according to the presence or absence of varves. Based on distance-based redundancy and variation partitioning analyses (dbRDA and VPA) we identified that intensified lake circulation inferred from vegetation openness reconstructions, delta C-13 data (a proxy for varve preservation) and total nitrogen content were abiotic factors that significantly explained the variation in the reconstructed cyanobacterial community from Lake Tiefer See sediments. Operational taxonomic units (OTUs) assigned to Microcystis sp. and Aphanizomenon sp. were identified as potential eutrophication-driven taxa of growing importance since circa common era (ca. CE) 1920 till present. This result is corroborated by a cyanobacteria lipid biomarker analysis. Furthermore, we suggest that stronger lake circulation as indicated by non-varved sediments favoured the deposition of the non-photosynthetic cyanobacteria sister clade Sericytochromatia, whereas lake bottom anoxia as indicated by subrecent- and recent varves favoured the Melainabacteria in sediments. Our findings highlight the potential of high-resolution amplicon sequencing in investigating the dynamics of past cyanobacterial communities in lake sediments and show that lake circulation, anoxic conditions, and human-induced eutrophication are main factors explaining variations in the cyanobacteria community in Lake Tiefer See during the last 350 years. KW - Late Holocene KW - Methylheptadecanes KW - Varves KW - Anthropocene KW - Sericytochromatia KW - Melainabacteria Y1 - 2021 U6 - https://doi.org/10.1007/s10933-021-00206-9 SN - 0921-2728 SN - 1573-0417 VL - 66 IS - 3 SP - 279 EP - 296 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Nwosu, Ebuka Canisius A1 - Roeser, Patricia Angelika A1 - Yang, Sizhong A1 - Pinkerneil, Sylvia A1 - Ganzert, Lars A1 - Dittmann, Elke A1 - Brauer, Achim A1 - Wagner, Dirk A1 - Liebner, Susanne T1 - Species-level spatio-temporal dynamics of cyanobacteria in a hard-water temperate lake in the Southern Baltics JF - Frontiers in microbiology N2 - Cyanobacteria are important primary producers in temperate freshwater ecosystems. However, studies on the seasonal and spatial distribution of cyanobacteria in deep lakes based on high-throughput DNA sequencing are still rare. In this study, we combined monthly water sampling and monitoring in 2019, amplicon sequence variants analysis (ASVs; a proxy for different species) and quantitative PCR targeting overall cyanobacteria abundance to describe the seasonal and spatial dynamics of cyanobacteria in the deep hard-water oligo-mesotrophic Lake Tiefer See, NE Germany. We observed significant seasonal variation in the cyanobacterial community composition (p < 0.05) in the epi- and metalimnion layers, but not in the hypolimnion. In winter-when the water column is mixed-picocyanobacteria (Synechococcus and Cyanobium) were dominant. With the onset of stratification in late spring, we observed potential niche specialization and coexistence among the cyanobacteria taxa driven mainly by light and nutrient dynamics. Specifically, ASVs assigned to picocyanobacteria and the genus Planktothrix were the main contributors to the formation of deep chlorophyll maxima along a light gradient. While Synechococcus and different Cyanobium ASVs were abundant in the epilimnion up to the base of the euphotic zone from spring to fall, Planktothrix mainly occurred in the metalimnetic layer below the euphotic zone where also overall cyanobacteria abundance was highest in summer. Our data revealed two potentially psychrotolerant (cold-adapted) Cyanobium species that appear to cope well under conditions of lower hypolimnetic water temperature and light as well as increasing sediment-released phosphate in the deeper waters in summer. The potential cold-adapted Cyanobium species were also dominant throughout the water column in fall and winter. Furthermore, Snowella and Microcystis-related ASVs were abundant in the water column during the onset of fall turnover. Altogether, these findings suggest previously unascertained and considerable spatiotemporal changes in the community of cyanobacteria on the species level especially within the genus Cyanobium in deep hard-water temperate lakes. KW - Cyanobium KW - picocyanobacteria diversity KW - amplicon sequencing KW - lake monitoring KW - ecological succession KW - lake stratification KW - psychrotolerant Y1 - 2021 U6 - https://doi.org/10.3389/fmicb.2021.761259 SN - 1664-302X VL - 12 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Mitzscherling, Julia A1 - MacLean, Joana A1 - Lipus, Daniel A1 - Bartholomäus, Alexander A1 - Mangelsdorf, Kai A1 - Lipski, André A1 - Roddatis, Vladimir A1 - Liebner, Susanne A1 - Wagner, Dirk T1 - Nocardioides alcanivorans sp. nov., a novel hexadecane-degrading species isolated from plastic waste JF - International journal of systematic and evolutionary microbiology N2 - Strain NGK65(T), a novel hexadecane degrading, non-motile, Gram-positive, rod-to-coccus shaped, aerobic bacterium, was isolated from plastic polluted soil sampled at a landfill. Strain NGK65(T) hydrolysed casein, gelatin, urea and was catalase-positive. It optimally grew at 28 degrees C. in 0-1% NaCl and at pH 7.5-8.0. Glycerol, D-glucose, arbutin, aesculin, salicin, potassium 5-ketogluconate. sucrose, acetate, pyruvate and hexadecane were used as sole carbon sources. The predominant membrane fatty acids were iso-C-16:0 followed by iso-C(17:)0 and C-18:1 omega 9c. The major polar lipids were phosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and hydroxyphosphatidylinositol. The cell-wall peptidoglycan type was A3 gamma, with LL-diaminopimelic acid and glycine as the diagnostic amino acids. MK 8 (H-4) was the predominant menaquinone. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain NGK65(T) belongs to the genus Nocardioides (phylum Actinobacteria). appearing most closely related to Nocardioides daejeonensis MJ31(T) (98.6%) and Nocardioides dubius KSL-104(T) (98.3%). The genomic DNA G+C content of strain NGK65(T) was 68.2%. Strain NGK65(T) and the type strains of species involved in the analysis had average nucleotide identity values of 78.3-71.9% as well as digital DNA-DNA hybridization values between 22.5 and 19.7%, which clearly indicated that the isolate represents a novel species within the genus Nocardioides. Based on phenotypic and molecular characterization, strain NGK65(T) can clearly be differentiated from its phylogenetic neighbours to establish a novel species, for which the name Nocardioides alcanivorans sp. nov. is proposed. The type strain is NGK65(T) (=DSM 113112(T)=NCCB 100846(T)). KW - Nocardioides alcanivorans KW - hexadecane KW - plastic degradation KW - terrestrial KW - plastisphere KW - bacteria Y1 - 2022 U6 - https://doi.org/10.1099/ijsem.0.005319 SN - 1466-5026 SN - 1466-5034 VL - 72 IS - 4 PB - Microbiology Society CY - London ER - TY - JOUR A1 - Angelopoulos, Michael A1 - Overduin, Pier Paul A1 - Westermann, Sebastian A1 - Tronicke, Jens A1 - Strauss, Jens A1 - Schirrmeister, Lutz A1 - Biskaborn, Boris A1 - Liebner, Susanne A1 - Maksimov, Georgii A1 - Grigoriev, Mikhail N. A1 - Grosse, Guido T1 - Thermokarst lake to lagoon transitions in Eastern Siberia BT - do submerged taliks refreeze? JF - Journal of geophysical research : Earth surface N2 - As the Arctic coast erodes, it drains thermokarst lakes, transforming them into lagoons, and, eventually, integrates them into subsea permafrost. Lagoons represent the first stage of a thermokarst lake transition to a marine setting and possibly more saline and colder upper boundary conditions. In this research, borehole data, electrical resistivity surveying, and modeling of heat and salt diffusion were carried out at Polar Fox Lagoon on the Bykovsky Peninsula, Siberia. Polar Fox Lagoon is a seasonally isolated water body connected to Tiksi Bay through a channel, leading to hypersaline waters under the ice cover. The boreholes in the center of the lagoon revealed floating ice and a saline cryotic bed underlain by a saline cryotic talik, a thin ice-bearing permafrost layer, and unfrozen ground. The bathymetry showed that most of the lagoon had bedfast ice in spring. In bedfast ice areas, the electrical resistivity profiles suggested that an unfrozen saline layer was underlain by a thick layer of refrozen talik. The modeling showed that thermokarst lake taliks can refreeze when submerged in saltwater with mean annual bottom water temperatures below or slightly above 0 degrees C. This occurs, because the top-down chemical degradation of newly formed ice-bearing permafrost is slower than the refreezing of the talik. Hence, lagoons may precondition taliks with a layer of ice-bearing permafrost before encroachment by the sea, and this frozen layer may act as a cap on gas migration out of the underlying talik. KW - thermokarst lake KW - talik KW - lagoon KW - subsea permafrost KW - salt diffusion KW - Siberia Y1 - 2020 U6 - https://doi.org/10.1029/2019JF005424 SN - 2169-9003 SN - 2169-9011 VL - 125 IS - 10 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Knoblauch, Christian A1 - Beer, Christian A1 - Liebner, Susanne A1 - Grigoriev, Mikhail N. A1 - Pfeiffer, Eva-Maria T1 - Methane production as key to the greenhouse gas budget of thawing permafrost JF - Nature climate change N2 - Permafrost thaw liberates frozen organic carbon, which is decomposed into carbon dioxide (CO2) and methane (CH4). The release of these greenhouse gases (GHGs) forms a positive feedback to atmospheric CO2 and CH4 concentrations and accelerates climate change(1,2). Current studies report a minor importance of CH4 production in water-saturated (anoxic) permafrost soils(3-6) and a stronger permafrost carbon-climate feedback from drained (oxic) soils(1,7). Here we show through seven-year laboratory incubations that equal amounts of CO2 and CH4 are formed in thawing permafrost under anoxic conditions after stable CH4-producing microbial communities have established. Less permafrost carbon was mineralized under anoxic conditions but more CO2-carbon equivalents (CO2Ce) were formed than under oxic conditions when the higher global warming potential (GWP) of CH4 is taken into account(8). A model of organic carbon decomposition, calibrated with the observed decomposition data, predicts a higher loss of permafrost carbon under oxic conditions (113 +/- 58 g CO2-C kgC(-1) (kgC, kilograms of carbon)) by 2100, but a twice as high production of CO2-Ce (241 +/- 138 g CO2-Ce kgC(-1)) under anoxic conditions. These findings challenge the view of a stronger permafrost carbon-climate feedback from drained soils1,7 and emphasize the importance of CH4 production in thawing permafrost on climate-relevant timescales. Y1 - 2018 U6 - https://doi.org/10.1038/s41558-018-0095-z SN - 1758-678X SN - 1758-6798 VL - 8 IS - 4 SP - 309 EP - 312 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Wen, Xi A1 - Unger, Viktoria A1 - Jurasinski, Gerald A1 - Koebsch, Franziska A1 - Horn, Fabian A1 - Rehder, Gregor A1 - Sachs, Torsten A1 - Zak, Dominik A1 - Lischeid, Gunnar A1 - Knorr, Klaus-Holger A1 - Boettcher, Michael E. A1 - Winkel, Matthias A1 - Bodelier, Paul L. E. A1 - Liebner, Susanne T1 - Predominance of methanogens over methanotrophs in rewetted fens characterized by high methane emissions JF - Biogeosciences N2 - The rewetting of drained peatlands alters peat geochemistry and often leads to sustained elevated methane emission. Although this methane is produced entirely by microbial activity, the distribution and abundance of methane-cycling microbes in rewetted peatlands, especially in fens, is rarely described. In this study, we compare the community composition and abundance of methane-cycling microbes in relation to peat porewater geochemistry in two rewetted fens in northeastern Germany, a coastal brackish fen and a freshwater riparian fen, with known high methane fluxes. We utilized 16S rRNA high-throughput sequencing and quantitative polymerase chain reaction (qPCR) on 16S rRNA, mcrA, and pmoA genes to determine microbial community composition and the abundance of total bacteria, methanogens, and methanotrophs. Electrical conductivity (EC) was more than 3 times higher in the coastal fen than in the riparian fen, averaging 5.3 and 1.5 mS cm(-1), respectively. Porewater concentrations of terminal electron acceptors (TEAs) varied within and among the fens. This was also reflected in similarly high intra- and inter-site variations of microbial community composition. Despite these differences in environmental conditions and electron acceptor availability, we found a low abundance of methanotrophs and a high abundance of methanogens, represented in particular by Methanosaetaceae, in both fens. This suggests that rapid (re) establishment of methanogens and slow (re) establishment of methanotrophs contributes to prolonged increased methane emissions following rewetting. Y1 - 2018 U6 - https://doi.org/10.5194/bg-15-6519-2018 SN - 1726-4170 SN - 1726-4189 VL - 15 IS - 21 SP - 6519 EP - 6536 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Koebsch, Franziska A1 - Winkel, Matthias A1 - Liebner, Susanne A1 - Liu, Bo A1 - Westphal, Julia A1 - Schmiedinger, Iris A1 - Spitzy, Alejandro A1 - Gehre, Matthias A1 - Jurasinski, Gerald A1 - Köhler, Stefan A1 - Unger, Viktoria A1 - Koch, Marian A1 - Sachs, Torsten A1 - Böttcher, Michael E. T1 - Sulfate deprivation triggers high methane production in a disturbed and rewetted coastal peatland JF - Biogeosciences N2 - In natural coastal wetlands, high supplies of marine sulfate suppress methanogenesis. Coastal wetlands are, however, often subject to disturbance by diking and drainage for agricultural use and can turn to potent methane sources when rewetted for remediation. This suggests that preceding land use measures can suspend the sulfate-related methane suppressing mechanisms. Here, we unravel the hydrological relocation and biogeochemical S and C transformation processes that induced high methane emissions in a disturbed and rewetted peatland despite former brackish impact. The underlying processes were investigated along a transect of increasing distance to the coastline using a combination of concentration patterns, stable isotope partitioning, and analysis of the microbial community structure. We found that diking and freshwater rewetting caused a distinct freshening and an efficient depletion of the brackish sulfate reservoir by dissimilatory sulfate reduction (DSR). Despite some legacy effects of brackish impact expressed as high amounts of sedimentary S and elevated electrical conductivities, contemporary metabolic processes operated mainly under sulfate-limited conditions. This opened up favorable conditions for the establishment of a prospering methanogenic community in the top 30-40 cm of peat, the structure and physiology of which resemble those of terrestrial organic-rich environments. Locally, high amounts of sulfate persisted in deeper peat layers through the inhibition of DSR, probably by competitive electron acceptors of terrestrial origin, for example Fe(III). However, as sulfate occurred only in peat layers below 30-40 cm, it did not interfere with high methane emissions on an ecosystem scale. Our results indicate that the climate effect of disturbed and remediated coastal wetlands cannot simply be derived by analogy with their natural counterparts. From a greenhouse gas perspective, the re-exposure of diked wetlands to natural coastal dynamics would literally open up the floodgates for a replenishment of the marine sulfate pool and therefore constitute an efficient measure to reduce methane emissions. Y1 - 2019 U6 - https://doi.org/10.5194/bg-16-1937-2019 SN - 1726-4170 SN - 1726-4189 VL - 16 IS - 9 SP - 1937 EP - 1953 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Heslop, J. K. A1 - Winkel, Matthias A1 - Anthony, K. M. Walter A1 - Spencer, R. G. M. A1 - Podgorski, D. C. A1 - Zito, P. A1 - Kholodov, A. A1 - Zhang, M. A1 - Liebner, Susanne T1 - Increasing organic carbon biolability with depth in yedoma permafrost BT - ramifications for future climate change JF - Journal of geophysical research : Biogeosciences N2 - Permafrost thaw subjects previously frozen organic carbon (OC) to microbial decomposition, generating the greenhouse gases (GHG) carbon dioxide (CO2) and methane (CH4) and fueling a positive climate feedback. Over one quarter of permafrost OC is stored in deep, ice-rich Pleistocene-aged yedoma permafrost deposits. We used a combination of anaerobic incubations, microbial sequencing, and ultrahigh-resolution mass spectrometry to show yedoma OC biolability increases with depth along a 12-m yedoma profile. In incubations at 3 degrees C and 13 degrees C, GHG production per unit OC at 12-versus 1.3-m depth was 4.6 and 20.5 times greater, respectively. Bacterial diversity decreased with depth and we detected methanogens at all our sampled depths, suggesting that in situ microbial communities are equipped to metabolize thawed OC into CH4. We concurrently observed an increase in the relative abundance of reduced, saturated OC compounds, which corresponded to high proportions of C mineralization and positively correlated with anaerobic GHG production potentials and higher proportions of OC being mineralized as CH4. Taking into account the higher global warming potential (GWP) of CH4 compared to CO2, thawed yedoma sediments in our study had 2 times higher GWP at 12-versus 9.0-m depth at 3 degrees C and 15 times higher GWP at 13 degrees C. Considering that yedoma is vulnerable to processes that thaw deep OC, our findings imply that it is important to account for this increasing GHG production and GWP with depth to better understand the disproportionate impact of yedoma on the magnitude of the permafrost carbon feedback. KW - permafrost KW - carbon KW - yedoma KW - Alaska KW - FT-ICR MS KW - microbes Y1 - 2019 U6 - https://doi.org/10.1029/2018JG004712 SN - 2169-8953 SN - 2169-8961 VL - 124 IS - 7 SP - 2021 EP - 2038 PB - American Geophysical Union CY - Washington ER -