TY - JOUR A1 - Neumann, Bettina A1 - Götz, Robert A1 - Wrzolek, Pierre A1 - Scheller, Frieder W. A1 - Weidinger, Inez M. A1 - Schwalbe, Matthias A1 - Wollenberger, Ulla T1 - Enhancement of the Electrocatalytic Activity of Thienyl-Substituted Iron Porphyrin Electropolymers by a Hangman Effect JF - ChemCatChem : heterogeneous & homogeneous & bio- & nano-catalysis ; a journal of ChemPubSoc Europe N2 - The thiophene-modified iron porphyrin FeT3ThP and the respective iron Hangman porphyrin FeH3ThP, incorporating a carboxylic acid hanging group in the second coordination sphere of the iron center, were electropolymerized on glassy carbon electrodes using 3,4-ethylenedioxythiophene (EDOT) as co-monomer. Scanning electron microscopy images and Resonance Raman spectra demonstrated incorporation of the porphyrin monomers into a fibrous polymer network. Porphyrin/polyEDOT films catalyzed the reduction of molecular oxygen in a four-electron reaction to water with onset potentials as high as +0.14V vs. Ag/AgCl in an aqueous solution of pH7. Further, FeT3ThP/polyEDOT films showed electrocatalytic activity towards reduction of hydrogen peroxide at highly positive potentials, which was significantly enhanced by introduction of the carboxylic acid hanging group in FeH3ThP. The second coordination sphere residue promotes formation of a highly oxidizing reaction intermediate, presumably via advantageous proton supply, as observed for peroxidases and catalases making FeH3ThP/polyEDOT films efficient mimics of heme enzymes. KW - activation of oxygen species KW - electro-polymerization KW - Hangman porphyrin KW - heterogeneous catalysis KW - immobilization Y1 - 2018 U6 - https://doi.org/10.1002/cctc.201800934 SN - 1867-3880 SN - 1867-3899 VL - 10 IS - 19 SP - 4353 EP - 4361 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Cui, Qianling A1 - Shen, Guizhi A1 - Yan, Xuehai A1 - Li, Lidong A1 - Moehwald, Helmuth A1 - Bargheer, Matias T1 - Fabrication of Au@Pt multibranched nanoparticles and their application to in situ SERS monitoring JF - ACS applied materials & interfaces N2 - Here, we present an Au@Pt core-shell multibranched nanoparticle as a new substrate capable of in situ surface-enhanced Raman scattering (SERS), thereby enabling monitoring of the catalytic reaction on the active surface. By careful control of the amount of Pt deposited bimetallic Au@Pt, nanoparticles with moderate performance both for SERS and catalytic activity were obtained. The Pt-catalyzed reduction of 4-nitrothiophenol by borohydride was chosen as the model reaction. The intermediate during the reaction was captured and clearly identified via SERS spectroscopy. We established in situ SERS spectroscopy as a promising and powerful technique to investigate in situ reactions taking place in heterogeneous catalysis. KW - nanoparticles KW - gold KW - core-shell nanostructure KW - surface-enhanced Raman scattering KW - heterogeneous catalysis KW - bimetallic nanoparticles Y1 - 2014 U6 - https://doi.org/10.1021/am504709a SN - 1944-8244 VL - 6 IS - 19 SP - 17075 EP - 17081 PB - American Chemical Society CY - Washington ER -