TY - THES A1 - Harbart, Vanessa T1 - The effect of protected cultivation on the nutritional quality of lettuce (Lactuca sativa var capitata L.) with a focus on antifogging additives in polyolefin covers T1 - Die Bedeutung des geschützten Anbaus für die ernährungsphysiologische Qualität von Kopfsalat (Lactuca sativa var. capitata L.) mit Schwerpunkt auf Antibeschlagmittel in Polyolefinfolien N2 - Protected cultivation in greenhouses or polytunnels offers the potential for sustainable production of high-yield, high-quality vegetables. This is related to the ability to produce more on less land and to use resources responsibly and efficiently. Crop yield has long been considered the most important factor. However, as plant-based diets have been proposed for a sustainable food system, the targeted enrichment of health-promoting plant secondary metabolites should be addressed. These metabolites include carotenoids and flavonoids, which are associated with several health benefits, such as cardiovascular health and cancer protection. Cover materials generally have an influence on the climatic conditions, which in turn can affect the levels of secondary metabolites in vegetables grown underneath. Plastic materials are cost-effective and their properties can be modified by incorporating additives, making them the first choice. However, these additives can migrate and leach from the material, resulting in reduced service life, increased waste and possible environmental release. Antifogging additives are used in agricultural films to prevent the formation of droplets on the film surface, thereby increasing light transmission and preventing microbiological contamination. This thesis focuses on LDPE/EVA covers and incorporated antifogging additives for sustainable protected cultivation, following two different approaches. The first addressed the direct effects of leached antifogging additives using simulation studies on lettuce leaves (Lactuca sativa var capitata L). The second determined the effect of antifog polytunnel covers on lettuce quality. Lettuce is usually grown under protective cover and can provide high nutritional value due to its carotenoid and flavonoid content, depending on the cultivar. To study the influence of simulated leached antifogging additives on lettuce leaves, a GC-MS method was first developed to analyze these additives based on their fatty acid moieties. Three structurally different antifogging additives (reference material) were characterized outside of a polymer matrix for the first time. All of them contained more than the main fatty acid specified by the manufacturer. Furthermore, they were found to adhere to the leaf surface and could not be removed by water or partially by hexane. The incorporation of these additives into polytunnel covers affects carotenoid levels in lettuce, but not flavonoids, caffeic acid derivatives and chlorophylls. Specifically, carotenoids were higher in lettuce grown under polytunnels without antifog than with antifog. This has been linked to their effect on the light regime and was suggested to be related to carotenoid function in photosynthesis. In terms of protected cultivation, the use of LDPE/EVA polytunnels affected light and temperature, and both are closely related. The carotenoid and flavonoid contents of lettuce grown under polytunnels was reversed, with higher carotenoid and lower flavonoid levels. At the individual level, the flavonoids detected in lettuce did not differ however, lettuce carotenoids adapted specifically depending on the time of cultivation. Flavonoid reduction was shown to be transcriptionally regulated (CHS) in response to UV light (UVR8). In contrast, carotenoids are thought to be regulated post-transcriptionally, as indicated by the lack of correlation between carotenoid levels and transcripts of the first enzyme in carotenoid biosynthesis (PSY) and a carotenoid degrading enzyme (CCD4), as well as the increased carotenoid metabolic flux. Understanding the regulatory mechanisms and metabolite adaptation strategies could further advance the strategic development and selection of cover materials. N2 - Der geschützte Anbau in Gewächshäusern oder unter Folientunneln bietet die Möglichkeit einer nachhaltigen Produktion von ertragreichem Gemüse hoher Qualität. Die ressourceneffiziente Produktion von mehr auf weniger Fläche ist dabei ein wichtiger Faktor. Lange galt der Gemüseertrag als wichtigstes Kriterium. Die Anreicherung von gesundheitsfördernden sekundären Pflanzenmetaboliten gewinnt jedoch zunehmend an Bedeutung, nicht zuletzt durch die empfohlene pflanzenbasierte Ernährung für ein nachhaltiges Ernährungssystem. Die Sekundärmetabolite Carotinoide und Flavonoide sind mit verschiedenen gesundheitlichen Vorteilen assoziiert, etwa der kardiovaskulären Gesundheit und der Krebsprävention. Das Material eines Gewächshauses beeinflusst die klimatischen Bedingungen im geschützten Anbau. Das resultierende Mikroklima kann sich wiederum auf den Gehalt an Sekundärmetaboliten im Gemüse auswirken. Materialien aus Kunststoff sind kostengünstig und ihre Eigenschaften können durch Zusätze, sogenannte Additive, modifiziert werden. Additive können an die Oberfläche des Materials und aus diesem migrieren, was die Materiallebensdauer einerseits verkürzt und größere Abfallmengen produziert. Andererseits besteht das Risiko einer Umweltemission der Additive. Antifogging-Additive verhindern die Bildung von Kondenswasser Tropfen auf der Oberfläche von Gewächshausfolien, wodurch die Lichtdurchlässigkeit der Folien verbessert, sowie eine mikrobiologische Kontamination vermieden werden kann. Die vorliegende Arbeit befasst sich mit LDPE/EVA-Gewächshausfolien mit Antifogging-Additiven für einen nachhaltigen geschützten Anbau und verfolgt dabei zwei unterschiedliche Herangehensweisen. Zum einen befasst sich die Arbeit mit den direkten Auswirkungen von Antifogging-Additiven in Folge eines Übergangs auf Salatblätter (Lactuca sativa var. capitata L.) mittels Simulationsversuchen. Um den simulierten Übergang zu untersuchen, wurde zunächst eine Methode zur Analyse des Fettsäureanteils der Additive mittels GC-MS entwickelt. Drei strukturell unterschiedliche Antifogging-Additive (Referenzmaterial) wurden erstmals außerhalb einer Polymermatrix charakterisiert. Sie enthielten diverse Fettsäuren, und somit mehr, als die vom Hersteller angegebene Hauptfettsäure. Des Weiteren wurde gezeigt, dass sie an der Blattoberfläche haften und weder durch Wasser noch teilweise durch Hexan entfernt werden können. Zum anderen wurde der Einfluss von Antifogging-Additiven in Gewächshausfolien auf die Salatqualität untersucht. Salat ist ein Gemüse, das üblicherweise auch unter Schutzabdeckungen angebaut wird und sortenspezifisch größere Mengen an Carotinoiden und Flavonoiden enthält. Der Anbau von Salat unter Antifog-Folientunneln beeinflusste den Carotinoidgehalt, nicht aber den Gehalt an Flavonoiden, Kaffeesäurederivaten und Chlorophyll. Salate, die unter Folientunneln ohne Antifog angebaut wurde akkumulierten höhere Gehalte der Carotinoide, als solche unter Antifog-Folientunneln. Es besteht wahrscheinlich ein Zusammenhang mit der Funktion der Carotinoide als Photosynthesepigmente und der Lichtumgebung. Die Verwendung von LDPE/EVA-Folientunneln beeinflusste allgemein Licht und Temperatur im geschützten Anbau, beide Faktoren sind eng verknüpft. Die Carotinoid- und Flavonoidgehalte waren dabei invers, mit höheren gesamt Carotinoid- und niedrigeren gesamt Flavonoidgehalten von Salaten unter Folientunneln. Die individuellen Flavonoid-Glykoside unterschieden sich innerhalb der Versuchszeiträume (Frühjahr und Herbst) nicht. Es konnte gezeigt werden, dass diese hinsichtlich der UV-Lichtumgebung (UVR8) transkriptionell reguliert werden (CHS). Demgegenüber fanden spezifische Anpassungen der individuellen Carotinoidmetabolite in den Versuchszeiträumen statt. Die fehlende Korrelation der Carotinoidmetabolite und der Transkripte des Hauptenzyms der Biosynthese (PSY) und eines Carotinoid-abbauenden Enzyms (CCD4) sowie der erhöhte Carotinoid-Stoffwechselfluss deuten auf eine post-transkriptionelle Regulierung hin. Die Regulationsmechanismen und Anpassungsstrategien der sekundären Pflanzenstoffe in Gemüse zu verstehen, könnte zukünftig zur strategischen Entwicklung und Auswahl von Gewächshausmaterialien beitragen. KW - protected cultivation KW - polytunnel KW - lettuce KW - antifogging additives KW - plant secondary metabolites KW - carotenoids KW - flavonoids KW - mass spectrometry KW - plastic additives KW - Antibeschlag-Additive KW - Carotinoide KW - Flavonoide KW - Kopfsalat KW - Massenspektrometrie KW - sekundäre Pflanzenstoffe KW - Kunststoff-Additive KW - Folientunnel KW - geschützter Anbau Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-629375 ER - TY - THES A1 - Michalik-Onichimowska, Aleksandra T1 - Real-time monitoring of (photo)chemical reactions in micro flow reactors and levitated droplets by IR-MALDI ion mobility and mass spectrometry N2 - Eine nachhaltigere chemische Industrie erfordert eine Minimierung der Lösungsmittel und Chemikalien. Daher werden Optimierung und Entwicklung chemischer Prozesse vor einer Produktion in großem Maßstab in kleinen Chargen durchgeführt. Der entscheidende Schritt bei diesem Ansatz ist die Skalierbarkeit von kleinen Reaktionssystemen auf große, kosteneffiziente Reaktoren. Die Vergrößerung des Volumens des Reaktionsmediums geht immer mit der Vergrößerung der Oberfläche einher, die mit dem begrenzenden Gefäß in Kontakt steht. Da das Volumen kubisch, während die Oberfläche quadratisch mit zunehmendem Radius skaliert, nimmt ihr Verhältnis nicht linear zu. Viele an der Grenzfläche zwischen Oberfläche und Flüssigkeit auftretende Phänomene können die Reaktionsgeschwindigkeiten und Ausbeuten beeinflussen, was zu falschen Prognosen aufgrund der kleinskaligen Optimierung führt. Die Anwendung von schwebenden Tropfen als behälterlose Reaktionsgefäße bietet eine vielversprechende Möglichkeit, die oben genannten Probleme zu vermeiden. In der vorgestellten Arbeit wurde eine effiziente Kopplung von akustisch schwebenden Tropfen und IM Spektrometer für die Echtzeitüberwachung chemischer Reaktionen entwickelt, bei denen akustisch schwebende Tropfen als Reaktionsgefäße fungieren. Das Design des Systems umfasst die berührungslose Probenahme und Ionisierung, die durch Laserdesorption und -ionisation bei 2,94 µm realisiert wird. Der Umfang der Arbeit umfasst grundlegende Studien zum Verständnis der Laserbestrahlung von Tropfen im akustischen Feld. Das Verständnis dieses Phänomens ist entscheidend, um den Effekt der zeitlichen und räumlichen Auflösung der erzeugten Ionenwolke zu verstehen, die die Auflösung des Systems beeinflusst. Der Aufbau umfasst eine akustische Falle, Laserbestrahlung und elektrostatische Linsen, die bei hoher Spannung unter Umgebungsdruck arbeiten. Ein effektiver Ionentransfer im Grenzflächenbereich zwischen dem schwebenden Tropfen und dem IMS muss daher elektrostatische und akustische Felder vollständig berücksichtigen. Für die Probenahme und Ionisation wurden zwei unterschiedliche Laserpulslängen untersucht, nämlich im ns- und µs-Bereich. Die Bestrahlung über µs-Laserpulse bietet gegenüber ns-Pulse mehrere Vorteile: i) das Tropfenvolumen wird nicht stark beeinflusst, was es ermöglichet, nur ein kleines Volumen des Tropfens abzutasten; ii) die geringere Fluenz führt zu weniger ausgeprägten Schwingungen des im akustischen Feld eingeschlossenen Tropfens und der Tropfen wird nicht aus dem akustischen Feld rückgeschlagen, was zum Verlust der Probe führen würde; iii) die milde Laserbestrahlung führt zu einer besseren räumlichen und zeitlichen Begrenzung der Ionenwolken, was zu einer besseren Auflösung der detektierten Ionenpakete führt. Schließlich ermöglicht dieses Wissen die Anwendung der Ionenoptik, die erforderlich ist, um den Ionenfluss zwischen dem im akustischen Feld suspendierten Tropfen und dem IM Spektrometer zu induzieren. Die Ionenoptik aus 2 elektrostatischen Linsen in der Nähe des Tropfens ermöglicht es, die Ionenwolke effektiv zu fokussieren und direkt zum IM Spektrometer-Eingang zu führen. Diese neuartige Kopplung hat sich beim Nachweis einiger basischer Moleküle als erfolgreich erwiesen. Um die Anwendbarkeit des Systems zu belegen, wurde die Reaktion zwischen N-Boc Cysteine Methylester und Allylalkohol in einem Chargenreaktor durchgeführt und online überwacht. Für eine Kalibrierung wurde der Reaktionsfortschritt parallel mittels 1H-NMR verfolgt. Der beobachtete Reaktionsumsatz von mehr als 50% innerhalb der ersten 20 Minuten demonstrierte die Eignung der Reaktion, um die Einsatzpotentiale des entwickelten Systems zu bewerten. N2 - One aspect of achieving a more sustainable chemical industry is the minimization of the usage of solvents and chemicals. Thus, optimization and development of chemical processes for large-scale production is favourably performed in small batches. The critical step in this approach is upscaling the batches from the small reaction systems to the large reactors mandatory for cost efficient production in an industrial environment. Scaling up the bulk volume always goes along with increasing the surface where the reaction medium is in contact with the confining vessel. Since volume scales proportional with the cubic dimension while the surface scales quadratic, their ratio is size-dependent. The influence of reaction vessel walls can change the reaction performance. A number of phenomena occurring at the surface-liquid interface can affect reaction rates and yields, resulting in possible difficulties in predicting and extrapolating from small size production scale to large industrial processes. The application of levitated droplets as a containerless reaction vessels provides a promising possibility to avoid the above-mentioned issues. In the presented work, an efficient coupling of acoustically levitated droplets to an ion mobility (IM) spectrometer, operating at ambient conditions, was designed for real-time monitoring of chemical reactions. The design of the system comprises noncontact sampling and ionization of the droplet realised by laser desorption/ionization at 2,94 µm. The scope of the work includes fundamental studies covering understanding of laser irradiation of droplets enclosed in an acoustical field. Understanding of this phenomenon is crucial to comprehending the effects of temporal and spatial resolution of the generated ion plume that influence the resolution of the system. The set-up includes an acoustic trap, laser irradiation and ion manipulation electrostatic lenses operating at high voltage at ambient pressure. The complexity of the design needs to fully be considered for an effective ion transfer at the interface region between the levitated droplet and IM spectrometer. For sampling and ionization, two distinct laser pulse lengths were evaluated, ns and µs. Irradiation via µs laser pulses provides several advantages: i) the droplet volume is not extensively impinged, as in case of ns laser pulses, allowing the sampling of only the small volume of the droplet; ii) the lower fluence results in less pronounced oscillations of the droplet confined in the acoustic field. The droplet will not be dissipated out of the acoustic field leading to loss of the sample; iii) the mild laser irradiation results in better spatial and temporal ion plume confinement, leading to better resolution of the detected ion packets. Finally, this knowledge allows the application of ion optics necessary to induce ion flow between the droplet suspended in the acoustic field and the IM spectrometer. The ion optics, composed of 2 electrostatic lenses placed in the near vicinity of the droplet, allow effective focusing of the ion plume and its redirection directly to the IM spectrometer entrance. This novel coupling has proved to be successful for detection of some simple molecules ionizable at the 2.94 µm wavelength. To further demonstrate the applicability of the system, a proof-of-principle reaction was selected, fulfilling the requirements of the system, and was subjected to comprehensive investigation of its performance. Herein, the reaction between N-Boc cysteine methyl ester and allyl alcohol has been performed in a batch reactor and on-line monitored via 1H NMR to establish reaction propagation. With the additional assessment, it was confirmed that the thiol-ene coupling can be performed within first 20 minutes of the irradiation with a reaction yield above 50%, proving that the reaction can be applied as a study case to assess the possibilities of the developed system. T2 - Echtzeit-Überwachung von (Photo)chemischen Reaktionen in Mikroströmungsreaktoren und schwebenden Tropfen durch IR-MALDI Ionenmoblität- und Massenspektrometrie KW - ion mobility spectrometry KW - mass spectrometry KW - acoustically levitated droplets KW - photochemical reactions KW - akustisch schwebende Tropfen KW - Ionenmobilitätspektrometrie KW - Massenspektrometrie KW - Photochemische Reaktionen Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-557298 ER - TY - THES A1 - Riebe, Daniel T1 - Experimental and theoretical investigations of molecular ions by spectroscopy as well as ion mobility and mass spectrometry T1 - Experimentelle und theoretische Untersuchungen molekularer Ionen durch Spektroskopie sowie Ionenmobilitäts- und Massenspektrometrie N2 - The aim of this thesis was the elucidation of different ionization methods (resonance-enhanced multiphoton ionization – REMPI, electrospray ionization – ESI, atmospheric pressure chemical ionization – APCI) in ion mobility (IM) spectrometry. In order to gain a better understanding of the ionization processes, several spectroscopic, mass spectrometric and theoretical methods were also used. Another focus was the development of experimental techniques, including a high resolution spectrograph and various combinations of IM and mass spectrometry. The novel high resolution 2D spectrograph facilitates spectroscopic resolutions in the range of commercial echelle spectrographs. The lowest full width at half maximum of a peak achieved was 25 pm. The 2D spectrograph is based on the wavelength separation of light by the combination of a prism and a grating in one dimension, and an etalon in the second dimension. This instrument was successfully employed for the acquisition of Raman and laser-induced breakdown spectra. Different spectroscopic methods (light scattering and fluorescence spectroscopy) permitting a spatial as well as spectral resolution, were used to investigate the release of ions in the electrospray. The investigation is based on the 50 nm shift of the fluorescence band of rhodamine 6G ions of during the transfer from the electrospray droplets to the gas phase. A newly developed ionization chamber operating at reduced pressure (0.5 mbar) was coupled to a time-of-flight mass spectrometer. After REMPI of H2S, an ionization chemistry analogous to H2O was observed with this instrument. Besides H2S+ and its fragments, H3S+ and protonated analyte ions could be observed as a result of proton-transfer reactions. For the elucidation of the peaks in IM spectra, a combination of IM spectrometer and linear quadrupole ion trap mass spectrometer was developed. The instrument can be equipped with various ionization sources (ESI, REMPI, APCI) and was used for the characterization of the peptide bradykinin and the neuroleptic promazine. The ionization of explosive compounds in an APCI source based on soft x-radiation was investigated in a newly developed ionization chamber attached to the ion trap mass spectrometer. The major primary and secondary reactions could be characterized and explosive compound ions could be identified and assigned to the peaks in IM spectra. The assignment is based on the comparison of experimentally determined and calculated IM. The methods of calculation currently available exhibit large deviations, especially in the case of anions. Therefore, on the basis of an assessment of available methods, a novel hybrid method was developed and characterized. N2 - Ziel dieser Arbeit war die Aufklärung unterschiedlicher Ionisationsmethoden (Resonanz-verstärkte Mehrphotonenionisation – REMPI, Elektrosprayionisation – ESI, chemische Ionisation bei Atmosphärendruck – APCI) in der Ionenmobilitäts (IM)-Spektrometrie. Um ein besseres Verständnis der Ionisationsprozesse zu erhalten, wurden zusätzlich ver¬schiedene spektroskopische, massenspektrometrische und theoretische Methoden eingesetzt. Ein weiterer Schwerpunkt war die Entwicklung neuer experimenteller Techniken, darunter ein hochauflösender Spektrograph und verschiedene Kombinationen von IM- und Massenspektrometern. Der neuartige, hochauflösende 2D Spektrograph ermöglicht spektroskopische Auflösungen im Bereich kommerzieller Echelle-Spektrographen. Die geringste erreichte Halbwertsbreite eines Peaks betrug 25 pm. Der 2D Spektrograph beruht auf der Wellenlängenseparation von Licht durch eine Kombination aus einem Prisma und einem Gitter in der einen Dimension und einem Etalon in der zweiten Dimension. Das Instrument wurde erfolgreich zur Aufnahme von Raman- und laserinduzierten Plasmaspektren ein¬gesetzt. Verschiedene spektroskopische Methoden (Lichtstreuung und Fluoreszenzspektroskopie), die sowohl eine räumliche, als auch eine spektrale Auflösung erlauben, wurden zur Untersuchung der Freisetzung der Ionen im Elektrospray angewandt. Die Untersuchung beruht auf der Verschiebung der Fluoreszenzbande von Rhodamin 6G-Ionen um 50 nm beim Übergang aus den Elektrospray-Tropfen in die Gasphase. Eine neuent¬wickelte Ionisationskammer bei reduziertem Druck (0,5 mbar) wurde an ein Flugzeit-Massenspektrometer gekoppelt. Darin wurde nach REMPI von H2S eine zum H2O analoge Ionisationschemie beobachtet. Neben H2S+ und seinen Fragmenten wurden als Ergebnis von Proto-nen-Transferreaktionen H3S+ und protonierte Analytionen beobachtet. Zur Aufklärung der Peaks in IM-Spektren wurde eine Kopplung von IM-Spektrometer und linearem Quadrupol-Ionenfallen-Massenspektrometer entwickelt. Die Kopplung kann mit verschiedenen Ionisationsquellen (ESI, REMPI, APCI) ausgestattet werden und wurde zur Charakterisierung des Peptids Bradykinin und des Neuroleptikums Promazin angewendet. Die Ionisation von Sprengstoffen in einer APCI-Quelle, die auf weicher Röntgenstrahlung beruht, wurde in einer neu entwickelten, an das Ionenfallen-Massenspektrometer gekoppelten Ionisationskammer untersucht. Dabei konnten die wichtigsten Primär- und Sekundärreaktionen charakterisiert, sowie Sprengstoffionen identifiziert und den Peaks in den IM-Spektren zugeordnet werden. Diese Zuordnung beruht auf dem Vergleich von experimentell bestimmten und berechneten IM. Da die aktuell verfügbaren Berechnungsmethoden insbesondere für Anionen zu große Abweichungen zu den experimentell bestimmten IM aufweisen, wurde auf Basis der Bewertung verfügbarer Methoden eine neue Hybridmethode entwickelt und charakterisiert. KW - ion mobility spectrometry KW - mass spectrometry KW - explosives KW - X-ray KW - photoionization KW - ion mobility calculations KW - Ionenmobilitätsspektrometrie KW - Massenspektrometrie KW - Sprengstoffe KW - Röntgenstrahlung KW - Photoionisation KW - Ionenmobilitäts-Berechnungen Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-94632 ER - TY - THES A1 - Kopka, Joachim T1 - Applied metabolome analysis : exploration, development and application of gas chromatography-mass spectrometry based metabolite profiling technologies T1 - Angewandte Metabolom Analyse : Erforschung, Entwicklung und Anwendung von auf Gaschromatographie-Massenspektrometrie basierenden N2 - The uptake of nutrients and their subsequent chemical conversion by reactions which provide energy and building blocks for growth and propagation is a fundamental property of life. This property is termed metabolism. In the course of evolution life has been dependent on chemical reactions which generate molecules that are common and indispensable to all life forms. These molecules are the so-called primary metabolites. In addition, life has evolved highly diverse biochemical reactions. These reactions allow organisms to produce unique molecules, the so-called secondary metabolites, which provide a competitive advantage for survival. The sum of all metabolites produced by the complex network of reactions within an organism has since 1998 been called the metabolome. The size of the metabolome can only be estimated and may range from less than 1,000 metabolites in unicellular organisms to approximately 200,000 in the whole plant kingdom. In current biology, three additional types of molecules are thought to be important to the understanding of the phenomena of life: (1) the proteins, in other words the proteome, including enzymes which perform the metabolic reactions, (2) the ribonucleic acids (RNAs) which constitute the so-called transcriptome, and (3) all genes of the genome which are encoded within the double strands of desoxyribonucleic acid (DNA). Investigations of each of these molecular levels of life require analytical technologies which should best enable the comprehensive analysis of all proteins, RNAs, et cetera. At the beginning of this thesis such analytical technologies were available for DNA, RNA and proteins, but not for metabolites. Therefore, this thesis was dedicated to the implementation of the gas chromatography – mass spectrometry technology, in short GC-MS, for the in-parallel analysis of as many metabolites as possible. Today GC-MS is one of the most widely applied technologies and indispensable for the efficient profiling of primary metabolites. The main achievements and research topics of this work can be divided into technological advances and novel insights into the metabolic mechanisms which allow plants to cope with environmental stresses. Firstly, the GC-MS profiling technology has been highly automated and standardized. The major technological achievements were (1) substantial contributions to the development of automated and, within the limits of GC-MS, comprehensive chemical analysis, (2) contributions to the implementation of time of flight mass spectrometry for GC-MS based metabolite profiling, (3) the creation of a software platform for reproducible GC-MS data processing, named TagFinder, and (4) the establishment of an internationally coordinated library of mass spectra which allows the identification of metabolites in diverse and complex biological samples. In addition, the Golm Metabolome Database (GMD) has been initiated to harbor this library and to cope with the increasing amount of generated profiling data. This database makes publicly available all chemical information essential for GC-MS profiling and has been extended to a global resource of GC-MS based metabolite profiles. Querying the concentration changes of hundreds of known and yet non-identified metabolites has recently been enabled by uploading standardized, TagFinder-processed data. Long-term technological aims have been pursued with the central aims (1) to enhance the precision of absolute and relative quantification and (2) to enable the combined analysis of metabolite concentrations and metabolic flux. In contrast to concentrations which provide information on metabolite amounts, flux analysis provides information on the speed of biochemical reactions or reaction sequences, for example on the rate of CO2 conversion into metabolites. This conversion is an essential function of plants which is the basis of life on earth. Secondly, GC-MS based metabolite profiling technology has been continuously applied to advance plant stress physiology. These efforts have yielded a detailed description of and new functional insights into metabolic changes in response to high and low temperatures as well as common and divergent responses to salt stress among higher plants, such as Arabidopsis thaliana, Lotus japonicus and rice (Oryza sativa). Time course analysis after temperature stress and investigations into salt dosage responses indicated that metabolism changed in a gradual manner rather than by stepwise transitions between fixed states. In agreement with these observations, metabolite profiles of the model plant Lotus japonicus, when exposed to increased soil salinity, were demonstrated to have a highly predictive power for both NaCl accumulation and plant biomass. Thus, it may be possible to use GC-MS based metabolite profiling as a breeding tool to support the selection of individual plants that cope best with salt stress or other environmental challenges. N2 - Die Aufnahme von Nährstoffen und ihre chemische Umwandlung mittels Reaktionen, die Energie und Baustoffe für Wachstum und Vermehrung bereitstellen, ist eine grundlegende Eigenschaft des Lebens. Diese Eigenschaft wird Stoffwechsel oder, wie im Folgenden, Metabolismus genannt. Im Verlauf der Evolution war alles Leben abhängig von solchen Reaktionen, die essentielle und allen Lebensformen gemeinsame Moleküle erzeugen. Über diese sogenannten Primärmetabolite hinaus sind hochdiverse Reaktionen entstanden. Diese erlauben Organismen, einzigartige sogenannte Sekundärmetabolite zu produzieren, die in der Regel einen zusätzlichen Überlebensvorteil vermitteln. Die Gesamtheit aller Metabolite, die von dem komplexen Reaktionsnetzwerk in Organismen erzeugt werden, nennt man seit 1998 das Metabolom. Die Größe des Metaboloms kann nur geschätzt werden. Neben der Gesamtheit aller Metabolite werden heute drei weitere Arten an Molekülen als wesentlich betrachtet, um die Phänomene des Lebens zu verstehen: erstens die Proteine, deren Summe, das Proteom, auch die Enzyme einschließt, die die obigen metabolischen Reaktionen durchführen, zweitens die Ribonukleinsäuren (RNS), deren Gesamtheit als Transkriptom bezeichnet wird, und drittens die doppelsträngige Desoxyribonukleinsäure (DNS), die das Genom, die Summe aller Gene eines Organismus, ausmacht. Die Untersuchung aller dieser vier molekularen Ebenen des Lebens erfordert Technologien, die idealerweise die vollständige Analyse der Gesamtheit aller DNS-, RNS-, Protein-Moleküle, bzw. Metabolite erlauben. Zu Beginn meiner Arbeiten waren solche Technologien für DNS, RNS, und Proteine verfügbar, aber nicht für Metabolite. Aus diesem Grund habe ich meine Forschungstätigkeit auf das Ziel ausgerichtet, so viele Metabolite wie irgend möglich in einer gemeinsamen Analyse zu erfassen. Zu diesem Zweck habe ich mich auf eine einzelne Technik, nämlich die gekoppelte Gaschromatographie und Massenspektrometrie, kurz GC-MS, konzentriert. Nicht zuletzt durch meine Arbeiten ist GC-MS heute eine der am häufigsten angewandten Technologien und unverzichtbar für das breite Durchmustern der Metabolite. Neben der Etablierung der grundlegenden GC-MS-Profilanalyse-Technologie liegen die Haupterrungenschaften meiner Arbeiten sowohl in den technischen Neuerungen als auch in den Einsichten in metabolische Mechanismen, die es Pflanzen erlauben, erfolgreich auf Umwelteinflüsse zu reagieren. Die technologischen Errungenschaften waren erstens wesentliche Beiträge zur Labor-Automatisierung und zur Auswertung von modernen, auf Flugzeitmassenspektrometrie beruhenden, GC-MS-Profilanalysen, zweitens die Entwicklung einer entsprechenden Prozessierungs-Software, genannt TagFinder, und drittens die Etablierung einer internationalen Datensammlung zur Metabolitidentifizierung aus komplexen Mischungen. Diese massenspektralen und gaschromatographischen Daten haben seit 2005 Eingang in die von mir initiierte Entwicklung der Golm Metabolom Datenbank (GMD) gefunden, die die zunehmend wachsenden GC-MS-Referenzdaten wie auch die Metabolitprofildaten verwaltet und öffentlich zugänglich macht. Darüber hinaus wurden die langfristigen Ziele einer verbesserten Präzision für relative und absolute Quantifizierung wie auch einer Kopplung von Konzentrationsbestimmung und metabolischen Flussanalysen mittels GC-MS verfolgt. Sowohl die Stoffmengen als auch die Geschwindigkeit der Stoffaufnahme und der chemischen Umsetzung, d.h. der metabolische Fluss, sind wesentlich für neue biologische Einsichten. In diesem Zusammenhang wurde von mir die Aufnahme von CO2 durch Pflanzen, der Basis allen Lebens auf der Erde, untersucht. Angewandt auf das Temperaturstress- und Salzstressverhalten von Modell- und Kulturpflanzen, nämlich des Ackerschmalwands (Arabidopsis thaliana), des Hornklees (Lotus japonicus) und der global bedeutendsten Nutzpflanze Reis (Oryza sativa), wurden detaillierte und vergleichende neue metabolische Einsichten in den Zeitverlauf der Temperaturanpassung und die Anpassung an zunehmend salzhaltige Böden erzielt. Metabolismus verändert sich unter diesen Bedingungen allmählich fortschreitend und nicht in plötzlichen Übergängen. Am Beispiel des Hornklees konnte gezeigt werden, dass Metabolitprofilanalysen eine hohe Vorhersagekraft für die Biomasseerzeugung unter Salzeinfluss wie auch für die Aufnahme von Salz durch die Pflanze haben. So mag es in Zukunft möglich werden, GC-MS-Profilanaysen anzuwenden, um den Züchtungsprozess von Kulturpflanzen zu beschleunigen. KW - Metabolomics KW - Metaboliten KW - Profilanalysen KW - Gaschromatographie KW - Massenspektrometrie KW - Metabolomics KW - Metabolites KW - Profiling KW - Gas Chromatography KW - Mass Spectrometry Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-40597 ER - TY - THES A1 - Bäßler, Olivia T1 - Identifizierung und Charakterisierung IgE- reaktiver Proteine in der Tomate (Lycopersicon esculentum) T1 - Novel tomato allergens : IgE-reactive legumin and vicilin proteins identified by multidimensional protein fractionation ; mass spectrometry and in silico epitope modelling N2 - Zur Detektion neuer IgE- reaktiver Proteine wurde in dieser Arbeit ein zweidimensionales Proteintrennverfahren verwendet. Resultierende Proteinfraktionen wurden mithilfe von 18 tomatensensibiliesierten Patientenseren im Immunoblot getestet. Detektierte Proteine in der SDS-PAGE wurden mittels LC-MS/MS identifiziert. Dadurch konnten 2 Tomatensamenproteine, die im Immunoblot ein IgE- reaktives Signal zeigten eindeutig mittels Massenspektrometrie identifiziert werden. Diese Proteine sind Legumin und Vicilin. Durch Sequenzabgleich und Proteinstrukturmodellierung im Vergleich zu bereits bekannten Allergenen (Erdnuss und Cashewnuss), konnte eine hohe Homologie gezeigt werden. N2 - For the detection of tomato allergens a multidimensional protein fractionation strategy and LC-MS/MS was used. Putative allergens were detected by IgE immunoblotting using sera from 18 adult tomato sensitised patients selected based on a positive history skin prick test and specific Immunglobulin (Ig) E levels. Two legumin- and vicilin- proteins were purified and showed strong IgE-reactivity in immunoblots. Individual patient sera exhibited varying IgE-sensitivity against the purified proteins. In silico structural modelling indicates high homology between epitopes of known peanut and cashewnut allergens and the detected IgE-crossreactive tomato proteins. KW - Massenspektrometrie KW - Tomate KW - Nahrungsmittelallergie KW - Speicherproteine KW - mass spectrometry KW - tomato KW - food allergy KW - storage proteins Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-26953 ER - TY - THES A1 - Bahrke, Sven T1 - Mass spectrometric analysis of chitooligosaccharides and their interaction with proteins T1 - Massenspektrometrische Analyse von Chitooligosacchariden und ihre Wechselwirkungen mit Proteinen N2 - Chitooligosaccharides are composed of glycosamin and N-acetylglycisamin residues. Gel permeations chromatography is employed for the separation of oligomers, cation exchange chromatography is used for the separation of homologes and isomers. Trideuterioacetylation of the chitooligosaccharides followed by MALDI-TOF mass spectrometry allowes for the quantitation of mixtures of homologes. vMALDI LTQ multiple-stage MS is employed for quantitative sequencing of complex mixtures of heterochitooligosaccharides. Pure homologes and isomers are applied to biological assays. Chitooligosaccahrides form high-affinity non-covalent complexes with HC gp-39 (human cartilage glycoprotein of 39 kDa). The affinity of the chitooligosaccharides depends on DP, FA and the sequence of glycosamin and N-acetylglycosamin moieties. (+)nanoESI Q TOF MS/MS is used for identification of a high-affinity binding chitooligosaccharide of a non-covalent chitinase B - chitooligosaccharide complex. DADAA is identified as the heterochitoisomer binding with highest affinity and biostability to HC gp-39. Fluorescence based enzyme assays confirm the results. N2 - Chitooligosaccharide sind aus Glycosamin und N-Acetylglycosamun aufgebaut. Gelpermeationschromatographie wird für die Trennung von Oligomeren verwendet, die Kationenaustauschchromatographie wird zur Trennung von homologen- und Isomerengemischen angewendet. Trideuterioacetylierung der Chitooligosaccharide gefolgt von einer Analyse mittels MALDI-TOF MS erlaubt die quantitative Analyse von Homologengemischen. vMALDI LTQ multiple-stage MS wird angewendet zur Sequenzanalyse und Quantifizierung komplexer Gemische von Heterochitooligosacchariden. Reine Homologe und Isomere werden für biologische Assays verwendet. Dabei zeigt sich, dass Chitooligosaccharide mit HC gp-39 hochaffine Komplexe bilden. Die Affinität der Chitooligosaccharide hängt vom DP, FA und der Sequenz der Chitooligosaccharide ab. (+)nanoESI Q TOF MS/MS wird erfolgreich angewendet zur Identifizierung eines Chitooligosaccharides, das mit hoher Affinität an Chitinase B (Serratia marcescens) bindet. DADAA wurde als die Sequenz des Isomers identifiziert, das mit höchster Affinität und Biostabilität an aktive Chitinase B bindet. Fluoreszenz basierte Enzymassays konnten dieses Ergebnis bestätigen. KW - Chitooligosaccharide KW - HPLC KW - Massenspektrometrie KW - Chitolektine KW - Chitinase KW - Chitooligosaccharides KW - HPLC KW - Mass Spectrometry KW - Chitolectins KW - Chitinase Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-20179 ER - TY - THES A1 - Birkemeyer, Claudia Sabine T1 - Signal-metabolome interactions in plants T1 - Signalmolekuel-Metabolom Interaktionen in Pflanzen N2 - From its first use in the field of biochemistry, instrumental analysis offered a variety of invaluable tools for the comprehensive description of biological systems. Multi-selective methods that aim to cover as many endogenous compounds as possible in biological samples use different analytical platforms and include methods like gene expression profile and metabolite profile analysis. The enormous amount of data generated in application of profiling methods needs to be evaluated in a manner appropriate to the question under investigation. The new field of system biology rises to the challenge to develop strategies for collecting, processing, interpreting, and archiving this vast amount of data; to make those data available in form of databases, tools, models, and networks to the scientific community. On the background of this development a multi-selective method for the determination of phytohormones was developed and optimised, complementing the profile analyses which are already in use (Chapter I). The general feasibility of a simultaneous analysis of plant metabolites and phytohormones in one sample set-up was tested by studies on the analytical robustness of the metabolite profiling protocol. The recovery of plant metabolites proved to be satisfactory robust against variations in the extraction protocol by using common extraction procedures for phytohormones; a joint extraction of metabolites and hormones from plant tissue seems practicable (Chapter II). Quantification of compounds within the context of profiling methods requires particular scrutiny (Chapter II). In Chapter III, the potential of stable-isotope in vivo labelling as normalisation strategy for profiling data acquired with mass spectrometry is discussed. First promising results were obtained for a reproducible quantification by stable-isotope in vivo labelling, which was applied in metabolomic studies. In-parallel application of metabolite and phytohormone analysis to seedlings of the model plant Arabidopsis thaliana exposed to sulfate limitation was used to investigate the relationship between the endogenous concentration of signal elements and the ‘metabolic phenotype’ of a plant. An automated evaluation strategy was developed to process data of compounds with diverse physiological nature, such as signal elements, genes and metabolites – all which act in vivo in a conditional, time-resolved manner (Chapter IV). Final data analysis focussed on conditionality of signal-metabolome interactions. N2 - Die instrumentelle Analytik stellt mit ihrem unschätzbaren Methodenreichtum Analysenwerkzeuge zur Verfügung, die seit ihrem Einzug in die Biologie die Aufzeichnung immer komplexerer ‚Momentaufnahmen’ von biologischen Systemen ermöglichen. Konkret hervorzuheben sind dabei vor allem die sogenannten ‚Profilmethoden’. Die Anwendung von Profilmethoden zielt darauf ab, aus einer bestimmten Stoffklasse so viele zugehörige Komponenten wie nur möglich gleichzeitig zu erfassen. Für die Auswertung derart komplexer Daten müssen nun auch entsprechende Auswertungsmethoden bereit gestellt werden. Das neu entstandene Fachgebiet der Systembiologie erarbeitet deshalb Strategien zum Sammeln, Auswerten und Archivieren komplexer Daten, um dieses gesammelte Wissen in Form von Datenbanken, Modellen und Netzwerken der allgemeinen Nutzung zugänglich zu machen. Vor diesem Hintergrund wurde den vorhandenen Profilanalysen eine Methode zur Erfassung von Pflanzenhormonen hinzugefügt. Verschiedene Experimente bestätigten die Möglichkeit zur Kopplung von Pflanzenhormon- und Pflanzeninhaltsstoff(=metabolit)-Profilanalyse. In weiteren Untersuchungen wurde das Potential einer innovativen Standardisierungstechnologie für die mengenmässige Erfassung von Pflanzeninhaltsstoffen in biologischen Proben betrachtet (in vivo labelling mit stabilen Isotopen). Hormon- und Metabolitprofilanalyse wurden dann parallel angewandt, um Wechselwirkungen zwischen der Konzentration von Signalkomponenten und der Ausprägung des Stoffwechsels in Keimlingen der Modellpflanze Arabidopsis thaliana zu untersuchen. Es wurde eine Prozessierungsmethode entwickelt, die es auf einfache Art und Weise erlaubt, Daten oder Komponenten verschiedenen Ursprungs wie Signalelemente, Gene und Metabolite, die in biologischen Systemen zeitlich versetzt aktiv oder verändert erscheinen, im Zusammenhang zu betrachten. Die abschließende Analyse aller Daten richtet sich auf die Abschätzung der Bedingtheit von Signal-Metabolismus Interaktionen. KW - Pflanzenhormon KW - Metabolom KW - Metabolit KW - Massenspektrometrie KW - GC-MS KW - Profilmessung KW - Profilmethode KW - Derivatisierung KW - Wissensextraktion KW - Datenbank KW - Zeatin KW - Pathwaysuche KW - Pathway Abbildung KW - Metabolitprofil KW - Signalstoffe KW - zeatin KW - pathway search KW - pathway mapping KW - metabolite profiling KW - signal compounds Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-7144 ER -