TY - GEN A1 - Güntner, Andreas A1 - Reich, Marvin A1 - Mikolaj, Michal A1 - Creutzfeldt, Benjamin A1 - Schroeder, Stephan A1 - Wziontek, Hartmut T1 - Landscape-scale water balance monitoring with an iGrav superconducting gravimeter in a field enclosure T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - In spite of the fundamental role of the landscape water balance for the Earth's water and energy cycles, monitoring the water balance and its components beyond the point scale is notoriously difficult due to the multitude of flow and storage processes and their spatial heterogeneity. Here, we present the first field deployment of an iGrav superconducting gravimeter (SG) in a minimized enclosure for long-term integrative monitoring of water storage changes. Results of the field SG on a grassland site under wet-temperate climate conditions were compared to data provided by a nearby SG located in the controlled environment of an observatory building. The field system proves to provide gravity time series that are similarly precise as those of the observatory SG. At the same time, the field SG is more sensitive to hydrological variations than the observatory SG. We demonstrate that the gravity variations observed by the field setup are almost independent of the depth below the terrain surface where water storage changes occur (contrary to SGs in buildings), and thus the field SG system directly observes the total water storage change, i.e., the water balance, in its surroundings in an integrative way. We provide a framework to single out the water balance components actual evapotranspiration and lateral subsurface discharge from the gravity time series on annual to daily timescales. With about 99 and 85% of the gravity signal due to local water storage changes originating within a radius of 4000 and 200m around the instrument, respectively, this setup paves the road towards gravimetry as a continuous hydrological field-monitoring technique at the landscape scale. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 663 KW - gravity measurements KW - local hydrology KW - storage changes KW - noise-levels KW - time KW - system KW - attraction KW - athmosphere KW - surface Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-419105 SN - 1866-8372 IS - 663 ER - TY - GEN A1 - Puppe, Daniel A1 - Höhn, Axel A1 - Kaczorek, Danuta A1 - Wanner, Manfred A1 - Wehrhan, Marc A1 - Sommer, Michael T1 - How big is the influence of biogenic silicon pools on short-term changes in water-soluble silicon in soils? BT - Implications from a study of a 10-year-old soil–plant system T2 - Postprints der Universität Potsdam : Mathematisch Naturwissenschaftliche Reihe N2 - The significance of biogenic silicon (BSi) pools as a key factor for the control of Si fluxes from terrestrial to aquatic ecosystems has been recognized for decades. However, while most research has been focused on phytogenic Si pools, knowledge of other BSi pools is still limited. We hypothesized that different BSi pools influence short-term changes in the water-soluble Si fraction in soils to different extents. To test our hypothesis we took plant (Calamagrostis epigejos, Phragmites australis) and soil samples in an artificial catchment in a post-mining landscape in the state of Brandenburg, Germany. We quantified phytogenic (phytoliths), protistic (diatom frustules and testate amoeba shells) and zoogenic (sponge spicules) Si pools as well as Tironextractable and water-soluble Si fractions in soils at the beginning (t(0)) and after 10 years (t(10)) of ecosystem development. As expected the results of Tiron extraction showed that there are no consistent changes in the amorphous Si pool at Chicken Creek (Huhnerwasser) as early as after 10 years. In contrast to t(0) we found increased water-soluble Si and BSi pools at t(10); thus we concluded that BSi pools are the main driver of short-term changes in water-soluble Si. However, because total BSi represents only small proportions of water-soluble Si at t(0) (< 2 %) and t(10) (2.8-4.3 %) we further concluded that smaller (< 5 mu m) and/or fragile phytogenic Si structures have the biggest impact on short-term changes in water-soluble Si. In this context, extracted phytoliths (> 5 mu m) only amounted to about 16% of total Si con-tents of plant materials of C. epigejos and P. australis at t(10); thus about 84% of small-scale and/or fragile phytogenic Si is not quantified by the used phytolith extraction method. Analyses of small-scale and fragile phytogenic Si structures are urgently needed in future work as they seem to represent the biggest and most reactive Si pool in soils. Thus they are the most important drivers of Si cycling in terrestrial biogeosystems. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 633 KW - brook experimental forest KW - protozoic Si pool KW - testate amebas KW - biochemical cycle KW - temperate forest KW - amorphous silica KW - dissolution KW - carbon KW - phytoliths KW - surface Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-417141 IS - 633 SP - 5239 EP - 5252 ER - TY - GEN A1 - Rubey, Michael A1 - Brune, Sascha A1 - Heine, Christian A1 - Davies, D. Rhodri A1 - Williams, Simon E. A1 - Müller, R. Dietmar T1 - Global patterns in Earth’s dynamic topography since the Jurassic BT - the role of subducted slabs T2 - Postprints der Universität Potsdam : Mathematisch Naturwissenschaftliche Reihe N2 - We evaluate the spatial and temporal evolution of Earth's long-wavelength surface dynamic topography since the Jurassic using a series of high-resolution global mantle convection models. These models are Earth-like in terms of convective vigour, thermal structure, surface heat-flux and the geographic distribution of heterogeneity. The models generate a degree-2-dominated spectrum of dynamic topography with negative amplitudes above subducted slabs (i.e. circum-Pacific regions and southern Eurasia) and positive amplitudes elsewhere (i.e. Africa, north-western Eurasia and the central Pacific). Model predictions are compared with published observations and subsidence patterns from well data, both globally and for the Australian and southern African regions. We find that our models reproduce the long-wavelength component of these observations, although observed smaller-scale variations are not reproduced. We subsequently define "geodynamic rules" for how different surface tectonic settings are affected by mantle processes: (i) locations in the vicinity of a subduction zone show large negative dynamic topography amplitudes; (ii) regions far away from convergent margins feature long-term positive dynamic topography; and (iii) rapid variations in dynamic support occur along the margins of overriding plates (e.g. the western US) and at points located on a plate that rapidly approaches a subduction zone (e.g. India and the Arabia Peninsula). Our models provide a predictive quantitative framework linking mantle convection with plate tectonics and sedimentary basin evolution, thus improving our understanding of how subduction and mantle convection affect the spatio-temporal evolution of basin architecture. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 623 KW - spherical mantle convection KW - southern African plateau KW - vertical motion KW - sea-level KW - seismic tomography KW - models KW - surface KW - gravity KW - lithosphere KW - Australia Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-418241 SN - 1866-8372 IS - 623 SP - 899 EP - 919 ER -