TY - JOUR A1 - Rottke, Falko O. A1 - Schulz, Burkhard A1 - Richau, Klaus A1 - Kratz, Karl A1 - Lendlein, Andreas T1 - An ellipsometric approach towards the description of inhomogeneous polymer-based Langmuir layers JF - Beilstein journal of nanotechnology N2 - The applicability of nulling-based ellipsometric mapping as a complementary method next to Brewster angle microscopy (BAM) and imaging ellipsometry (IE) is presented for the characterization of ultrathin films at the air-water interface. First, the methodology is demonstrated for a vertically nonmoving Langmuir layer of star-shaped, 4-arm poly(omega-pentadecalactone) (PPDL-D4). Using nulling-based ellipsometric mapping, PPDL-D4-based inhomogeneously structured morphologies with a vertical dimension in the lower nm range could be mapped. In addition to the identification of these structures, the differentiation between a monolayer and bare water was possible. Second, the potential and limitations of this method were verified by applying it to more versatile Langmuir layers of telechelic poly[(rac-lactide)-co-glycolide]-diol (PLGA). All ellipsometric maps were converted into thickness maps by introduction of the refractive index that was derived from independent ellipsometric experiments, and the result was additionally evaluated in terms of the root mean square roughness, R-q. Thereby, a three-dimensional view into the layers was enabled and morphological inhomogeneity could be quantified. KW - ellipsometric mapping KW - Langmuir monolayer KW - polyester KW - root mean square roughness KW - spectroscopic ellipsometry Y1 - 2016 U6 - https://doi.org/10.3762/bjnano.7.107 SN - 2190-4286 VL - 7 SP - 1156 EP - 1165 PB - Beilstein-Institut zur Förderung der Chemischen Wissenschaften CY - Frankfurt, Main ER - TY - JOUR A1 - Rossberg, Joana A1 - Rottke, Falko O. A1 - Schulz, Burkhard A1 - Lendlein, Andreas T1 - Enzymatic Degradation of Oligo(epsilon-caprolactone)s End-Capped with Phenylboronic Acid Derivatives at the Air-Water Interface JF - Macromolecular rapid communications N2 - The influence of terminal functionalization of oligo(epsilon-caprolactone)s (OCL) with phenylboronic acid pinacol ester or phenylboronic acid on the enzymatic degradation behavior at the air-water interface is investigated by the Langmuir monolayer degradation technique. While the unsubstituted OCL immediately degrades after injection of the enzyme lipase from Pseudomonas cepacia, enzyme molecules are incorporated into the films based on end-capped OCL before degradation. This incorporation of enzymes does not inhibit or suppress the film degradation, but retards it significantly. A specific binding of lipase to the polymer monolayer allows studying the enzymatic activity of bound proteins and the influence on the degradation process. The functionalization of a macromolecule with phenyl boronic acid groups is an approach to investigate their interactions with diol-containing biomolecules like sugars and to monitor their specified impact on the enzymatic degradation behavior at the air-water interface. Y1 - 2016 U6 - https://doi.org/10.1002/marc.201600471 SN - 1022-1336 SN - 1521-3927 VL - 37 SP - 1966 EP - 1971 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Sarauli, David A1 - Borowski, Anja A1 - Peters, Kristina A1 - Schulz, Burkhard A1 - Fattakhova-Rohlfing, Dina A1 - Leimkühler, Silke A1 - Lisdat, Fred T1 - Investigation of the pH-Dependent Impact of Sulfonated Polyaniline on Bioelectrocatalytic Activity of Xanthine Dehydrogenase JF - ACS catalysis N2 - We report on the pH-dependent bioelectrocatalytic activity of the redox enzyme xanthine dehydrogenase (XDH) in the presence of sulfonated polyaniline PMSA1 (poly(2-methoxyaniline-5-sulfonic acid)-co-aniline). Ultraviolet-visible (UV-vis) spectroscopic measurements with both components in solution reveal electron transfer from the hypoxanthine (HX)-reduced enzyme to the polymer. The enzyme shows bioelectrocatalytic activity on indium tin oxide (ITO) electrodes, when the polymer is present. Depending on solution pH, different processes can be identified. It can be demonstrated that not only product-based communication with the electrode but also efficient polymer-supported bioelectrocatalysis occur. Interestingly, substrate dependent catalytic currents can be obtained in acidic and neutral solutions, although the highest activity of XDH with natural reaction partners is in the alkaline region. Furthermore, operation of the enzyme electrode without addition of the natural cofactor of XDH is feasible. Finally, macroporous ITO electrodes have been used as an immobilization platform for the fabrication of HX-sensitive electrodes. The study shows that the efficient polymer/enzyme interaction can be advantageously combined with the open structure of an electrode material of controlled pore size, resulting in good processability, stability, and defined signal transfer in the presence of a substrate. KW - enzyme bioelectrocatalysis KW - sulfonated polyanilines KW - xanthine dehydrogenase KW - pH-dependent electrochemistry KW - macroporous ITO electrodes Y1 - 2016 U6 - https://doi.org/10.1021/acscatal.6b02011 SN - 2155-5435 VL - 6 SP - 7152 EP - 7159 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Schöne, Anne-Christin A1 - Kratz, Karl A1 - Schulz, Burkhard A1 - Lendlein, Andreas T1 - Polymer architecture versus chemical structure as adjusting tools for the enzymatic degradation of oligo(epsilon-caprolactone) based films at the air-water interface JF - Polymer Degradation and Stability N2 - The enzymatic degradation of oligo(epsilon-caprolactone) (OCL) based films at the air-water interface is investigated by Langmuir monolayer degradation (LMD) experiments to elucidate the influence of the molecular architecture and of the chemical structure on the chain scission process. For that purpose, the interactions of 2D monolayers of two star-shaped poly(epsilon-caprolactone)s (PCLs) and three linear OCL based copolyesterurethanes (P(OCL-U)) with the lipase from Pseudomonas cepacia are evaluated in comparison to linear OCL. While the architecture of star-shaped PCL Langmuir layers slightly influences their degradability compared to OCL films, significantly retarded degradations are observed for P(OCL-U) films containing urethane junction units derived from 2, 2 (4), 4-trimethyl hexamethylene diisocyanate (TMDI), hexamethylene diisocyanate (HDI) or lysine ethyl ester diisocyanate (LDI). The enzymatic degradation of the OCL based 2D structures is related to the presence of hydrophilic groups within the macromolecules rather than to the packing density of the film or to the molecular weight. The results reveal that the LMD technique allows the parallel analysis of both the film/enzyme interactions and the degradation process on the molecular level. (C) 2016 Elsevier Ltd. All rights reserved. KW - Langmuir technique KW - Oligo(epsilon-caprolactone) KW - Enzymatic degradation KW - Polymer architecture Y1 - 2016 U6 - https://doi.org/10.1016/j.polymdegradstab.2016.07.010 SN - 0141-3910 SN - 1873-2321 VL - 131 SP - 114 EP - 121 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Schöne, Anne-Christin A1 - Schulz, Burkhard A1 - Lendlein, Andreas T1 - Stimuli Responsive and Multifunctional Polymers: Progress in Materials and Applications JF - Macromolecular rapid communications Y1 - 2016 U6 - https://doi.org/10.1002/marc.201600650 SN - 1022-1336 SN - 1521-3927 VL - 37 SP - 1856 EP - 1859 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Schöne, Anne-Christin A1 - Kratz, Karl A1 - Schulz, Burkhard A1 - Lendlein, Andreas T1 - The relevance of hydrophobic segments in multiblock copolyesterurethanes for their enzymatic degradation at the air-water interface JF - Polymer : the international journal for the science and technology of polymers N2 - The interplay of an enzyme with a multiblock copolymer PDLCL containing two segments of different hydrophilicity and degradability is explored in thin films at the air-water interface. The enzymatic degradation was studied in homogenous Langmuir monolayers, which are formed when containing more than 40 wt% oligo(epsilon-caprolactone) (OCL). Enzymatic degradation rates were significantly reduced with increasing content of hydrophobic oligo(omega-pentadecalactone) (OPDL). The apparent deceleration of the enzymatic process is caused by smaller portion of water-soluble degradation fragments formed from degradable OCL fragments. Beside the film degradation, a second competing process occurs after adding lipase from Pseudomonas cepacia into the subphase, namely the enrichment of the lipase molecules in the polymeric monolayer. The incorporation of the lipase into the Langmuir film is experimentally revealed by concurrent surface area enlargement and by Brewster angle microscopy (BAM). Aside from the ability to provide information about the degradation behavior of polymers, the Langmuir monolayer degradation (LMD) approach enables to investigate polymer-enzyme interactions for non-degradable polymers. (C) 2016 Elsevier Ltd. All rights reserved. KW - Multiblock copolymer KW - Enzymatic polymer degradation KW - Oligo(omega-pentadecalactone) KW - Oligo(epsilon-caprolactone) KW - Langmuir monolayer degradation technique Y1 - 2016 U6 - https://doi.org/10.1016/j.polymer.2016.09.001 SN - 0032-3861 SN - 1873-2291 VL - 102 SP - 92 EP - 98 PB - Elsevier CY - Oxford ER -