TY - JOUR A1 - Husser, Tim-Oliver A1 - Kamann, Sebastian A1 - Dreizler, Stefan A1 - Wendt, Martin A1 - Wulff, Nina A1 - Bacon, Roland A1 - Wisotzki, Lutz A1 - Brinchmann, Jarle A1 - Weilbacher, Peter Michael A1 - Roth, Martin M. A1 - Monreal-Ibero, Ana T1 - MUSE crowded field 3D spectroscopy of over 12 000 stars in the globular cluster NGC 6397 I. The first comprehensive HRD of a globular cluster JF - Nucleic acids research N2 - Aims. We demonstrate the high multiplex advantage of crowded field 3D spectroscopy with the new integral field spectrograph MUSE by means of a spectroscopic analysis of more than 12 000 individual stars in the globular cluster NGC 6397. Methods. The stars are deblended with a point spread function fitting technique, using a photometric reference catalogue from HST as prior, including relative positions and brightnesses. This catalogue is also used for a first analysis of the extracted spectra, followed by an automatic in-depth analysis via a full-spectrum fitting method based on a large grid of PHOENIX spectra. Results. We analysed the largest sample so far available for a single globular cluster of 18 932 spectra from 12 307 stars in NGC 6397. We derived a mean radial velocity of v(rad) = 17.84 +/- 0.07 km s(-1) and a mean metallicity of [Fe/H] = -2.120 +/- 0.002, with the latter seemingly varying with temperature for stars on the red giant branch (RGB). We determine Teff and [Fe/H] from the spectra, and log g from HST photometry. This is the first very comprehensive Hertzsprung-Russell diagram (HRD) for a globular cluster based on the analysis of several thousands of stellar spectra, ranging from the main sequence to the tip of the RGB. Furthermore, two interesting objects were identified; one is a post-AGB star and the other is a possible millisecond-pulsar companion. KW - methods: data analysis KW - techniques: imaging spectroscopy KW - planets and satellites: fundamental parameters KW - stars: atmospheres KW - pulsars: general KW - globular clusters: individual: NGC 6397 Y1 - 2016 U6 - https://doi.org/10.1051/0004-6361/201526949 SN - 1432-0746 VL - 588 PB - EDP Sciences CY - Les Ulis ER -