TY - GEN A1 - Xiong, Chao A1 - Stolle, Claudia A1 - Lühr, Hermann A1 - Park, Jaeheung A1 - Fejer, Bela G. A1 - Kervalishvili, Guram N. T1 - Scale analysis of equatorial plasma irregularities derived from Swarm constellation T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - In this study, we investigated the scale sizes of equatorial plasma irregularities (EPIs) using measurements from the Swarm satellites during its early mission and final constellation phases. We found that with longitudinal separation between Swarm satellites larger than 0.4°, no significant correlation was found any more. This result suggests that EPI structures include plasma density scale sizes less than 44 km in the zonal direction. During the Swarm earlier mission phase, clearly better EPI correlations are obtained in the northern hemisphere, implying more fragmented irregularities in the southern hemisphere where the ambient magnetic field is low. The previously reported inverted-C shell structure of EPIs is generally confirmed by the Swarm observations in the northern hemisphere, but with various tilt angles. From the Swarm spacecrafts with zonal separations of about 150 km, we conclude that larger zonal scale sizes of irregularities exist during the early evening hours (around 1900 LT). T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1112 KW - Equatorial plasma irregularities KW - ionospheric scale lengths KW - Swarm constellation Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-431842 SN - 1866-8372 IS - 1112 ER - TY - JOUR A1 - Xiong, Chao A1 - Stolle, Claudia A1 - Luehr, Hermann A1 - Park, Jaeheung A1 - Fejer, Bela G. A1 - Kervalishvili, Guram N. T1 - Scale analysis of equatorial plasma irregularities derived from Swarm constellation JF - Earth, planets and space N2 - In this study, we investigated the scale sizes of equatorial plasma irregularities (EPIs) using measurements from the Swarm satellites during its early mission and final constellation phases. We found that with longitudinal separation between Swarm satellites larger than 0.4 degrees, no significant correlation was found any more. This result suggests that EPI structures include plasma density scale sizes less than 44 km in the zonal direction. During the Swarm earlier mission phase, clearly better EPI correlations are obtained in the northern hemisphere, implying more fragmented irregularities in the southern hemisphere where the ambient magnetic field is low. The previously reported inverted-C shell structure of EPIs is generally confirmed by the Swarm observations in the northern hemisphere, but with various tilt angles. From the Swarm spacecrafts with zonal separations of about 150 km, we conclude that larger zonal scale sizes of irregularities exist during the early evening hours (around 1900 LT). KW - Equatorial plasma irregularities KW - Ionospheric scale lengths KW - Swarm constellation Y1 - 2016 U6 - https://doi.org/10.1186/s40623-016-0502-5 SN - 1880-5981 VL - 68 SP - 189 EP - 202 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Xiong, Chao A1 - Stolle, Claudia A1 - Lühr, Hermann T1 - The Swarm satellite loss of GPS signal and its relation to ionospheric plasma irregularities JF - Space Weather: The International Journal of Research and Applications N2 - In this study we investigated conditions for loss of GPS signals observed by the Swarm satellites during a 2 year period, from December 2013 to November 2015. Our result shows that the Swarm satellites encountered most of the total loss of GPS signal at the ionization anomaly crests, between +/- 5 degrees and +/- 20 degrees magnetic latitude, forming two bands along the magnetic equator, and these low-latitude events mainly appear around postsunset hours from 19: 00 to 22: 00 local time. By further checking the in situ electron density measurements of Swarm, we found that practically, all the total loss of GPS signal events at low latitudes are related to equatorial plasma irregularities (EPIs) that show absolute density depletions larger than 10 x 10(11) m(-3); then, the Swarm satellites encountered for up to 95% loss of GPS signal for at least one channel and up to 45% tracked less than four GPS satellites (making precise orbit determination impossible). For those EPIs with density depletions less than 10 x 10(11) m(-3), the chance of tracked GPS signals less than four reduces to only 1.0%. Swarm also observed total loss of all GPS signal at high latitudes, mainly around local noon, and these events are related to large spatial density gradients due to polar patches or increased geomagnetic/auroral activities. We further found that the loss of GPS signals were less frequent after appropriate settings of the Swarm GPS receivers had been updated. However, the more recent period of the mission, e.g., after the GPS receiver settings have been updated, also coincides with less severe electron density depletions due to the declining solar cycle, making GPS loss events less likely. We conclude that both lower electron density gradients and appropriate GPS receiver settings reduce the probability for Swarm satellites loss of GPS signals. Y1 - 2016 U6 - https://doi.org/10.1002/2016SW001439 SN - 1542-7390 VL - 14 SP - 563 EP - 577 PB - American Geophysical Union CY - Washington ER -