TY - JOUR A1 - Reil, Daniela A1 - Imholt, Christian A1 - Drewes, Stephan A1 - Ulrich, Rainer Günter A1 - Eccard, Jana A1 - Jacob, Jens T1 - Environmental conditions in favour of a hantavirus outbreak in 2015 in Germany? JF - Zoonoses and Public Health N2 - Bank voles can harbour Puumala virus (PUUV) and vole populations usually peak in years after beech mast. A beech mast occurred in 2014 and a predictive model indicates high vole abundance in 2015. This pattern is similar to the years 2009/2011 when beech mast occurred, bank voles multiplied and human PUUV infections increased a year later. Given similar environmental conditions in 2014/2015, increased risk of human PUUV infections in 2015 is likely. Risk management measures are recommended. KW - Beech fructification KW - Puumala virus KW - bank vole KW - outbreak KW - nephropathia epidemica KW - Germany Y1 - 2016 U6 - https://doi.org/10.1111/zph.12217 SN - 1863-1959 SN - 1863-2378 VL - 63 SP - 83 EP - 88 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Schmidt, Sabrina A1 - Saxenhofer, Moritz A1 - Drewes, Stephan A1 - Schlegel, Mathias A1 - Wanka, Konrad M. A1 - Frank, Raphael A1 - Klimpel, Sven A1 - von Blanckenhagen, Felix A1 - Maaz, Denny A1 - Herden, Christiane A1 - Freise, Jona A1 - Wolf, Ronny A1 - Stubbe, Michael A1 - Borkenhagen, Peter A1 - Ansorge, Hermann A1 - Eccard, Jana A1 - Lang, Johannes A1 - Jourdain, Elsa A1 - Jacob, Jens A1 - Marianneau, Philippe A1 - Heckel, Gerald A1 - Ulrich, Rainer Günter T1 - High genetic structuring of Tula hantavirus JF - Archives of virology N2 - Tula virus (TULV) is a vole-associated hantavirus with low or no pathogenicity to humans. In the present study, 686 common voles (Microtus arvalis), 249 field voles (Microtus agrestis) and 30 water voles (Arvicola spec.) were collected at 79 sites in Germany, Luxembourg and France and screened by RT-PCR and TULV-IgG ELISA. TULV-specific RNA and/or antibodies were detected at 43 of the sites, demonstrating a geographically widespread distribution of the virus in the studied area. The TULV prevalence in common voles (16.7 %) was higher than that in field voles (9.2 %) and water voles (10.0 %). Time series data at ten trapping sites showed evidence of a lasting presence of TULV RNA within common vole populations for up to 34 months, although usually at low prevalence. Phylogenetic analysis demonstrated a strong genetic structuring of TULV sequences according to geography and independent of the rodent species, confirming the common vole as the preferential host, with spillover infections to co-occurring field and water voles. TULV phylogenetic clades showed a general association with evolutionary lineages in the common vole as assessed by mitochondrial DNA sequences on a large geographical scale, but with local-scale discrepancies in the contact areas. Y1 - 2016 U6 - https://doi.org/10.1007/s00705-016-2762-6 SN - 0304-8608 SN - 1432-8798 VL - 161 SP - 1135 EP - 1149 PB - Springer CY - Wien ER - TY - JOUR A1 - Schuster, Andrea C. A1 - Herde, Antje A1 - Mazzoni, Camila J. A1 - Eccard, Jana A1 - Sommer, Simone T1 - Evidence for selection maintaining MHC diversity in a rodent species despite strong density fluctuations JF - Immunogenetics N2 - Strong spatiotemporal variation in population size often leads to reduced genetic diversity limiting the adaptive potential of individual populations. Key genes of adaptive variation are encoded by the immune genes of the major histocompatibility complex (MHC) playing an essential role in parasite resistance. How MHC variation persists in rodent populations that regularly experience population bottlenecks remains an important topic in evolutionary genetics. We analysed the consequences of strong population fluctuations on MHC class II DRB exon 2 diversity in two distant common vole (Microtus arvalis) populations in three consecutive years using a high-throughput sequencing approach. In 143 individuals, we detected 25 nucleotide alleles translating into 14 unique amino acid MHC alleles belonging to at least three loci. Thus, the overall allelic diversity and amino acid distance among the remaining MHC alleles, used as a surrogate for the range of pathogenic antigens that can be presented to T-cells, are still remarkably high. Both study populations did not show significant population differentiation between years, but significant differences were found between sites. We concluded that selection processes seem to be strong enough to maintain moderate levels of MHC diversity in our study populations outcompeting genetic drift, as the same MHC alleles were conserved between years. Differences in allele frequencies between populations might be the outcome of different local parasite pressures and/or genetic drift. Further understanding of how pathogens vary across space and time will be crucial to further elucidate the mechanisms maintaining MHC diversity in cyclic populations. KW - MHC diversity KW - Selection KW - High-throughput next-generation sequencing KW - Population cycle KW - Common vole KW - Microtus arvalis Y1 - 2016 U6 - https://doi.org/10.1007/s00251-016-0916-z SN - 0093-7711 SN - 1432-1211 VL - 68 SP - 429 EP - 437 PB - Springer CY - New York ER - TY - JOUR A1 - Schneider, A. -K. A1 - van Schaik, L. A1 - Zangerle, A. A1 - Eccard, Jana A1 - Schroeder, B. T1 - Which abiotic filters shape earthworm distribution patterns at the catchment scale? JF - European journal of soil science N2 - Earthworms affect various soil ecosystem processes in their role as ecosystem engineers. The spatial distribution of earthworms determines the spatial distribution of their functional effects. In particular, earthworm-induced macropore networks may act as preferential flow pathways. In this research we aimed to determine earthworm distributions at the catchment scale with species distribution models (SDMs). We used land-use types, temporally invariant topography-related variables and plot-scale soil characteristics such as pH and organic matter content. We used data from spring 2013 to estimate probability distributions of the occurrence of ten earthworm species. To assess the robustness of these models, we tested temporal transferability by evaluating the accuracy of predictions from the models derived for the spring data with the predictions from data of two other field surveys in autumn 2012 and 2013. In addition, we compared the performance of SDMs based (i) on temporally varying plot-scale predictor variables with (ii) those based on temporally invariant catchment-scale predictors. Models based on catchment-scale predictors, especially land use and slope, experience a small loss of predictive performance only compared with plot-scale SDMs but have greater temporal transferability. Earthworm distribution maps derived from this kind of SDM are a prerequisite for understanding the spatial distribution patterns of functional effects related to earthworms. Y1 - 2016 U6 - https://doi.org/10.1111/ejss.12346 SN - 1351-0754 SN - 1365-2389 VL - 67 SP - 431 EP - 442 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Heim, Olga A1 - Schröder, Assja A1 - Eccard, Jana A1 - Jung, Kirsten A1 - Voigt, Christian C. T1 - Seasonal activity patterns of European bats above intensively used farmland JF - The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters N2 - Bats are top insect predators on farmland, yet they suffer from intensive farmland management. Here, we evaluated the seasonal activity patterns of European bats above large, arable fields and compared these patterns between ecologically distinct bat species. Using repeated passive acoustic monitoring on a total of 93 arable fields in 2 years in Brandenburg, Germany, we surveyed the activity of different bat species between early spring and autumn. We then used generalized additive mixed models to describe and compare the seasonal bat activity patterns between bat categories, which were build based on the affiliation to a functional group and migratory class, while controlling for local weather conditions. In general, the affiliation to a bat category in interaction with the season in addition to cloud cover and ambient air temperature explained a major part of bat activity. The season was also an important factor for the foraging activity of open-space specialists such as Nyctalus noctula but showed only a weak effect on species such as Pipistreilus nathusii which are adapted to edge-space habitats. Across the seasons, habitat use intensity was high during the period of swarming and migration and low during the energy demanding period of lactation. Seasonal patterns in foraging activity showed that open-space specialists foraged more intensively above agricultural fields during the migration period, while edge-space specialists foraged also during the energy demanding period of lactation. We conclude that the significant seasonal fluctuations in bat activity and significant differences between bat categories in open agricultural landscapes should be taken into consideration when designing monitoring schemes and management plans for bat species in regions dominated by agriculture. Also, management plans should be directed to improve the conditions on arable land especially for bat species which would be classified as narrow-space foragers such as Myotis species. (C) 2016 Elsevier B.V. All rights reserved. KW - Agricultural intensification KW - Seasonality KW - European bat species KW - Functional bat group KW - Migration KW - AgroScapeLabs Y1 - 2016 U6 - https://doi.org/10.1016/j.agee.2016.09.002 SN - 0167-8809 SN - 1873-2305 VL - 233 SP - 130 EP - 139 PB - Elsevier CY - Amsterdam ER -