TY - JOUR A1 - Reichel, Martin A1 - Rhein, Cosima A1 - Hofmann, Lena M. A1 - Monti, Juliana A1 - Japtok, Lukasz A1 - Langgartner, Dominik A1 - Füchsl, Andrea M. A1 - Kleuser, Burkhard A1 - Gulbins, Erich A1 - Hellerbrand, Claus A1 - Reber, Stefan O. A1 - Kornhuber, Johannes T1 - Chronic Psychosocial Stress in Mice Is Associated With Increased Acid Sphingomyelinase Activity in Liver and Serum and With Hepatic C16:0-Ceramide Accumulation JF - Frontiers in Psychiatry N2 - Chronic psychosocial stress adversely affects human morbidity and is a risk factor for inflammatory disorders, liver diseases, obesity, metabolic syndrome, and major depressive disorder (MDD). In recent studies, we found an association of MDD with an increase of acid sphingomyelinase (ASM) activity. Thus, we asked whether chronic psychosocial stress as a detrimental factor contributing to the emergence of MDD would also affect ASM activity and sphingolipid (SL) metabolism. To induce chronic psychosocial stress in male mice we employed the chronic subordinate colony housing (CSC) paradigm and compared them to non-stressed single housed control (SHC) mice. We determined Asm activity in liver and serum, hepatic SL concentrations as well as hepatic mRNA expression of genes involved in SL metabolism. We found that hepatic Asm activity was increased by 28% (P = 0.006) and secretory Asm activity by 47% (P = 0.002) in stressed mice. C16:0-Cer was increased by 40% (P = 0.008). Gene expression analysis further revealed an increased expression of tumor necrosis factor (TNF)-alpha (P = 0.009) and of several genes involved in SL metabolism (Cers5, P = 0.028; Cers6, P = 0.045; Gba, P = 0.049; Gba2, P = 0.030; Ormdl2, P = 0.034; Smpdl3B; P = 0.013). Our data thus provides first evidence that chronic psychosocial stress, at least in mice, induces alterations in SL metabolism, which in turn might be involved in mediating the adverse health effects of chronic psychosocial stress and peripheral changes occurring in mood disorders. KW - chronic psychosocial stress KW - acid sphingomyelinase KW - ceramide KW - sphingolipid metabolism KW - chronic subordinate colony housing (CSC) KW - liver metabolism Y1 - 2018 U6 - https://doi.org/10.3389/fpsyt.2018.00496 SN - 1664-0640 VL - 9 PB - Frontiers Research Foundation CY - Lausanne ER - TY - GEN A1 - Reichel, Martin A1 - Rhein, Cosima A1 - Hofmann, Lena M. A1 - Monti, Juliana A1 - Japtok, Lukasz A1 - Langgartner, Dominik A1 - Füchsl, Andrea M. A1 - Kleuser, Burkhard A1 - Gulbins, Erich A1 - Hellerbrand, Claus A1 - Reber, Stefan O. A1 - Kornhuber, Johannes T1 - Chronic psychosocial stress in mice is associated with increased acid sphingomyelinase activity in liver and serum and with hepatic C16:0-ceramide accumulation T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Chronic psychosocial stress adversely affects human morbidity and is a risk factor for inflammatory disorders, liver diseases, obesity, metabolic syndrome, and major depressive disorder (MDD). In recent studies, we found an association of MDD with an increase of acid sphingomyelinase (ASM) activity. Thus, we asked whether chronic psychosocial stress as a detrimental factor contributing to the emergence of MDD would also affect ASM activity and sphingolipid (SL) metabolism. To induce chronic psychosocial stress in male mice we employed the chronic subordinate colony housing (CSC) paradigm and compared them to non-stressed single housed control (SHC) mice. We determined Asm activity in liver and serum, hepatic SL concentrations as well as hepatic mRNA expression of genes involved in SL metabolism. We found that hepatic Asm activity was increased by 28% (P = 0.006) and secretory Asm activity by 47% (P = 0.002) in stressed mice. C16:0-Cer was increased by 40% (P = 0.008). Gene expression analysis further revealed an increased expression of tumor necrosis factor (TNF)-alpha (P = 0.009) and of several genes involved in SL metabolism (Cers5, P = 0.028; Cers6, P = 0.045; Gba, P = 0.049; Gba2, P = 0.030; Ormdl2, P = 0.034; Smpdl3B; P = 0.013). Our data thus provides first evidence that chronic psychosocial stress, at least in mice, induces alterations in SL metabolism, which in turn might be involved in mediating the adverse health effects of chronic psychosocial stress and peripheral changes occurring in mood disorders. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1120 KW - chronic psychosocial stress KW - acid sphingomyelinase KW - ceramide KW - sphingolipid metabolism KW - chronic subordinate colony housing (CSC) KW - liver metabolism Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-446241 SN - 1866-8372 IS - 1120 ER - TY - JOUR A1 - Rakers, Christin A1 - Schumacher, Fabian A1 - Meinl, Walter A1 - Glatt, Hansruedi A1 - Kleuser, Burkhard A1 - Wolber, Gerhard T1 - In Silico Prediction of Human Sulfotransferase 1E1 Activity Guided by Pharmacophores from Molecular Dynamics Simulations JF - The journal of biological chemistry N2 - Acting during phase II metabolism, sulfotransferases (SULTs) serve detoxification by transforming a broad spectrum of compounds from pharmaceutical, nutritional, or environmental sources into more easily excretable metabolites. However, SULT activity has also been shown to promote formation of reactive metabolites that may have genotoxic effects. SULT subtype 1E1 (SULT1E1) was identified as a key player in estrogen homeostasis, which is involved in many physiological processes and the pathogenesis of breast and endometrial cancer. The development of an in silico prediction model for SULT1E1 ligands would therefore support the development of metabolically inert drugs and help to assess health risks related to hormonal imbalances. Here, we report on a novel approach to develop a model that enables prediction of substrates and inhibitors of SULT1E1. Molecular dynamics simulations were performed to investigate enzyme flexibility and sample protein conformations. Pharmacophores were developed that served as a cornerstone of the model, and machine learning techniques were applied for prediction refinement. The prediction model was used to screen the DrugBank (a database of experimental and approved drugs): 28% of the predicted hits were reported in literature as ligands of SULT1E1. From the remaining hits, a selection of nine molecules was subjected to biochemical assay validation and experimental results were in accordance with the in silico prediction of SULT1E1 inhibitors and substrates, thus affirming our prediction hypotheses. KW - drug design KW - drug metabolism KW - liver metabolism KW - molecular dynamics KW - molecular modeling KW - sulfotransferase Y1 - 2016 U6 - https://doi.org/10.1074/jbc.M115.685610 SN - 0021-9258 SN - 1083-351X VL - 291 SP - 58 EP - 71 PB - American Society for Biochemistry and Molecular Biology CY - Bethesda ER -