TY - JOUR A1 - Eichelmann, Fabian A1 - Sellem, Laury A1 - Wittenbecher, Clemens A1 - Jäger, Susanne A1 - Kuxhaus, Olga A1 - Prada, Marcela A1 - Cuadrat, Rafael A1 - Jackson, Kim G. A1 - Lovegrove, Julie A. A1 - Schulze, Matthias Bernd T1 - Deep lipidomics in human plasma: cardiometabolic disease risk and effect of dietary fat modulation JF - Circulation N2 - Background: In blood and tissues, dietary and endogenously generated fatty acids (FAs) occur in free form or as part of complex lipid molecules that collectively represent the lipidome of the respective tissue. We assessed associations of plasma lipids derived from high-resolution lipidomics with incident cardiometabolic diseases and subsequently tested if the identified risk-associated lipids were sensitive to dietary fat modification. Methods: The EPIC Potsdam cohort study (European Prospective Investigation into Cancer and Nutrition) comprises 27 548 participants recruited within an age range of 35 to 65 years from the general population around Potsdam, Germany. We generated 2 disease-specific case cohorts on the basis of a fixed random subsample (n=1262) and all respective cohort-wide identified incident primary cardiovascular disease (composite of fatal and nonfatal myocardial infarction and stroke; n=551) and type 2 diabetes (n=775) cases. We estimated the associations of baseline plasma concentrations of 282 class-specific FA abundances (calculated from 940 distinct molecular species across 15 lipid classes) with the outcomes in multivariable-adjusted Cox models. We tested the effect of an isoenergetic dietary fat modification on risk-associated lipids in the DIVAS randomized controlled trial (Dietary Intervention and Vascular Function; n=113). Participants consumed either a diet rich in saturated FAs (control), monounsaturated FAs, or a mixture of monounsaturated and n-6 polyunsaturated FAs for 16 weeks. Results: Sixty-nine lipids associated (false discovery rate<0.05) with at least 1 outcome (both, 8; only cardiovascular disease, 49; only type 2 diabetes, 12). In brief, several monoacylglycerols and FA16:0 and FA18:0 in diacylglycerols were associated with both outcomes; cholesteryl esters, free fatty acids, and sphingolipids were largely cardiovascular disease specific; and several (glycero)phospholipids were type 2 diabetes specific. In addition, 19 risk-associated lipids were affected (false discovery rate<0.05) by the diets rich in unsaturated dietary FAs compared with the saturated fat diet (17 in a direction consistent with a potential beneficial effect on long-term cardiometabolic risk). For example, the monounsaturated FA-rich diet decreased diacylglycerol(FA16:0) by 0.4 (95% CI, 0.5-0.3) SD units and increased triacylglycerol(FA22:1) by 0.5 (95% CI, 0.4-0.7) SD units. Conclusions: We identified several lipids associated with cardiometabolic disease risk. A subset was beneficially altered by a dietary fat intervention that supports the substitution of dietary saturated FAs with unsaturated FAs as a potential tool for primary disease prevention. KW - cardiovascular diseases KW - cholesterol KW - diabetes mellitus KW - type 2 KW - diet KW - food KW - and nutrition KW - epidemiology KW - lipids Y1 - 2022 U6 - https://doi.org/10.1161/CIRCULATIONAHA.121.056805 SN - 0009-7322 SN - 1524-4539 VL - 146 IS - 1 SP - 21 EP - 35 PB - Lippincott Williams & Wilkins CY - Philadelphia ER - TY - JOUR A1 - Garcia, Ada Lizbeth A1 - Raila, Jens A1 - Koebnick, Corinna A1 - Eulenberger, Klaus A1 - Schweigert, Florian J. T1 - Great apes show highly selective plasma carotenoids and have physiologically high plasma retinyl esters compared to humans JF - American journal of physical anthropology N2 - Great apes are the closest living relatives of humans. Physiological similarities between great apes and humans provide clues to identify which biological features in humans are primitive or derived from great apes. Vitamin A (VA) and carotenoid metabolism have been only partially studied in great apes, and comparisons between great apes and humans are not available. We aimed to investigate VA and carotenoid intake and plasma concentrations in great apes living in captivity, and to compare them to healthy humans. Dietary intakes of humans (n = 20) and, among the great apes, chimpanzees (n = 15) and orangutans (n = 5) were calculated. Plasma retinol (ROH), retinol-binding protein (RBP), retinyl esters, and major carotenoids were analyzed. The great ape diet was higher in VA than in humans, due to high intake of provitamin A carotenoids. Plasma ROH concentrations in great apes were similar to those in humans, but retinyl esters were higher in great apes than in humans. Differences in plasma carotenoid concentrations were observed between great apes and humans. Lutein was the main carotenoid in great apes, while P-carotene was the main carotenoid for humans. RBP concentrations did not differ between great apes and humans. The molar ratio of ROH to RBP was close to 1.0 in both great apes and humans. In conclusion, great apes show homeostatic ROH regulation, with high but physiological retinyl esters circulating in plasma. Furthermore, great apes show great selectivity in their plasmatic carotenoid concentration, which is not explained by dietary intake. KW - vitamin A KW - diet KW - retinol-binding protein KW - chimpanzee KW - orangutan Y1 - 2006 U6 - https://doi.org/10.1002/ajpa.20428 SN - 0002-9483 VL - 131 IS - 2 SP - 236 EP - 242 PB - Wiley CY - Hoboken ER -