TY - JOUR A1 - Heinze, Johannes T1 - Herbivory by aboveground insects impacts plant root morphological traits JF - Plant ecology : an international journal N2 - Aboveground herbivory induces physiological responses, like the release of belowground chemical defense and storage of secondary metabolites, as well as physical responses in plants, like increased root biomass production. However, studies on effects of aboveground herbivory on root morphology are scarce and until now no study tested herbivory effects under natural conditions for a large set of plant species. Therefore, in a field experiment on plant-soil interactions, I investigated the effect of aboveground insect herbivory on root morphological traits of 20 grassland plant species. For 9 of the 20 species, all individuals showed shoot damage in the presence of insect herbivores, but no damage in insect herbivore exclusions. In these 9 species root biomass increased and root morphological traits changed under herbivory towards thinner roots with increased specific root surface. In contrast, the remaining species did not differ in the number of individuals damaged, root biomass nor morphological traits with herbivores present vs. absent. The fact that aboveground herbivory resulted in thinner roots with increased specific root surface area for all species in which the herbivore exclusion manipulation altered shoot damage might indicate that plants increase nutrient uptake in response to herbivory. However, more importantly, results provide empirical evidence that aboveground herbivory impacts root morphological traits of plants. As these traits are important for the occupation of soil space, uptake processes, decomposition and interactions with soil biota, results suggest that herbivory-induced changes in root morphology might be of importance for plant-soil feedbacks and plant-plant competition. KW - herbivory KW - root traits KW - specific root length KW - specific root surface KW - area KW - plant-soil feedback KW - competition Y1 - 2020 U6 - https://doi.org/10.1007/s11258-020-01045-w SN - 1385-0237 SN - 1573-5052 VL - 221 IS - 8 SP - 725 EP - 732 PB - Springer CY - Dordrecht ER - TY - GEN A1 - Polom, Ulrich A1 - Alrshdan, Hussam A1 - Al-Halbouni, Djamil A1 - Holohan, Eoghan P. A1 - Dahm, Torsten A1 - Sawarieh, Ali A1 - Atallah, Mohamad Y. A1 - Krawczyk, Charlotte M. T1 - Shear wave reflection seismic yields subsurface dissolution and subrosion patterns BT - application to the Ghor Al-Haditha sinkhole site, Dead Sea, Jordan T2 - Postprints der Universität Potsdam : Mathematisch Naturwissenschaftliche Reihe N2 - Near-surface geophysical imaging of alluvial fan settings is a challenging task but crucial for understating geological processes in such settings. The alluvial fan of Ghor Al-Haditha at the southeast shore of the Dead Sea is strongly affected by localized subsidence and destructive sinkhole collapses, with a significantly increasing sinkhole formation rate since ca. 1983. A similar increase is observed also on the western shore of the Dead Sea, in correlation with an ongoing decline in the Dead Sea level. Since different structural models of the upper 50 m of the alluvial fan and varying hypothetical sinkhole processes have been suggested for the Ghor Al-Haditha area in the past, this study aimed to clarify the subsurface characteristics responsible for sinkhole development. For this purpose, high-frequency shear wave reflection vibratory seismic surveys were carried out in the Ghor Al-Haditha area along several crossing and parallel profiles with a total length of 1.8 and 2.1 km in 2013 and 2014, respectively. The sedimentary architecture of the alluvial fan at Ghor Al-Haditha is resolved down to a depth of nearly 200 m at a high resolution and is calibrated with the stratigraphic profiles of two boreholes located inside the survey area. The most surprising result of the survey is the absence of evidence of a thick (> 2–10 m) compacted salt layer formerly suggested to lie at ca. 35–40 m depth. Instead, seismic reflection amplitudes and velocities image with good continuity a complex interlocking of alluvial fan deposits and lacustrine sediments of the Dead Sea between 0 and 200 m depth. Furthermore, the underground section of areas affected by sinkholes is characterized by highly scattering wave fields and reduced seismic interval velocities. We propose that the Dead Sea mud layers, which comprise distributed inclusions or lenses of evaporitic chloride, sulfate, and carbonate minerals as well as clay silicates, become increasingly exposed to unsaturated water as the sea level declines and are consequently destabilized and mobilized by both dissolution and physical erosion in the subsurface. This new interpretation of the underlying cause of sinkhole development is supported by surface observations in nearby channel systems. Overall, this study shows that shear wave seismic reflection technique is a promising method for enhanced near-surface imaging in such challenging alluvial fan settings. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 979 KW - salt dissolution KW - hazard KW - coast KW - area KW - subsidence KW - shoreline KW - karst KW - lake Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-459134 SN - 1866-8372 IS - 979 SP - 1079 EP - 1098 ER - TY - GEN A1 - Smith, Taylor A1 - Bookhagen, Bodo A1 - Cannon, Forest T1 - Improving semi-automated glacier mapping with a multi-method approach BT - applications in central Asia T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Studies of glaciers generally require precise glacier outlines. Where these are not available, extensive manual digitization in a geographic information system (GIS) must be performed, as current algorithms struggle to delineate glacier areas with debris cover or other irregular spectral profiles. Although several approaches have improved upon spectral band ratio delineation of glacier areas, none have entered wide use due to complexity or computational intensity. In this study, we present and apply a glacier mapping algorithm in Central Asia which delineates both clean glacier ice and debris-covered glacier tongues. The algorithm is built around the unique velocity and topographic characteristics of glaciers and further leverages spectral and spatial relationship data. We found that the algorithm misclassifies between 2 and 10% of glacier areas, as compared to a similar to 750 glacier control data set, and can reliably classify a given Landsat scene in 3-5 min. The algorithm does not completely solve the difficulties inherent in classifying glacier areas from remotely sensed imagery but does represent a significant improvement over purely spectral-based classification schemes, such as the band ratio of Landsat 7 bands three and five or the normalized difference snow index. The main caveats of the algorithm are (1) classification errors at an individual glacier level, (2) reliance on manual intervention to separate connected glacier areas, and (3) dependence on fidelity of the input Landsat data. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 510 KW - debris-covered glaciers KW - land ice measurements KW - remote-sensing data KW - thematic mapper KW - glims project KW - aster data KW - inventory KW - area KW - deformation KW - parameters Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-408471 SN - 1866-8372 IS - 510 ER -