TY - JOUR A1 - Cavael, Ulrike A1 - Diehl, Katharina A1 - Lentzsch, Peter T1 - Assessment of growth suppression in apple production with replant soils JF - Ecological indicators : integrating monitoring, assessment and management N2 - Apple replant disease (ARD) is a specific apple-related form of soil fertility loss due to unidentified causes and is also known as soil fatigue. The effect typically appears in monoculture production sites and leads to production decreases of up to 50%, even though the cultivation practice remains the same. However, an indication of replant disease is challenged by the lack of specification of the particular microbial group responsible for ARD. The objective of this study was to establish an algorithm for estimating growth suppression in orchards irrespective of the unknowns in the complex causal relationship by assessing plant-soil interaction in the orchard several years after planting. Based on a comparison between no-replant and replant soils, the Alternaria group (Ag) was identified as a soil-fungal population responding to replant with abundance. The trunk cross-sectional area (CSA) was found to be a practical and robust parameter representing below-ground and above-ground tree performance. Suppression of tree vigour was therefore calculated by dividing the two inversely related parameters, Q = ln(Ag)/CSA, as a function of soil-fungal proportions and plant responses at the single-tree level. On this basis, five clusters of tree vigour suppression (Q) were defined: (1) no tree vigour suppression/vital (0%), (2) escalating (- 38%), (3) strong (- 53%), (4) very strong (- 62%), and (5) critical (- 74%). By calculating Q at the level of the single tree, trees were clustered according to tree vigour suppression. The weighted frequency of clusters in the field allowed replant impact to be quantified at field level. Applied to a case study on sandy brown, dry diluvial soils in Brandenburg, Germany, the calculated tree vigour suppression was 46% compared to the potential tree vigour on no-replant soil in the same field. It is highly likely that the calculated growth suppression corresponds to ARD-impact This result is relevant for identifying functional changes in soil and for monitoring the economic effects of soil fatigue in apple orchards, particularly where long-period crop rotation or plot exchange are improbable. KW - orchard management KW - trunk cross-sectional area KW - alternaria group KW - apple KW - production KW - soil fatigue KW - apple replant disease Y1 - 2019 U6 - https://doi.org/10.1016/j.ecolind.2019.105846 SN - 1470-160X SN - 1872-7034 VL - 109 PB - Elsevier Science CY - Amsterdam ER - TY - JOUR A1 - Cavael, Ulrike A1 - Diehl, Katharina A1 - Lentzsch, Peter T1 - Assessment of growth suppression in apple production with replant soils JF - Ecological indicators : integrating monitoring, assessment and management N2 - Apple replant disease (ARD) is a specific apple-related form of soil fertility loss due to unidentified causes and is also known as soil fatigue. The effect typically appears in monoculture production sites and leads to production decreases of up to 50%, even though the cultivation practice remains the same. However, an indication of replant disease is challenged by the lack of specification of the particular microbial group responsible for ARD. The objective of this study was to establish an algorithm for estimating growth suppression in orchards irrespective of the unknowns in the complex causal relationship by assessing plant-soil interaction in the orchard several years after planting. Based on a comparison between no-replant and replant soils, the Alternaria group (Ag) was identified as a soil-fungal population responding to replant with abundance. The trunk cross-sectional area (CSA) was found to be a practical and robust parameter representing below-ground and above-ground tree performance. Suppression of tree vigour was therefore calculated by dividing the two inversely related parameters, Q = ln(Ag)/CSA, as a function of soil-fungal proportions and plant responses at the single-tree level. On this basis, five clusters of tree vigour suppression (Q) were defined: (1) no tree vigour suppression/vital (0%), (2) escalating (- 38%), (3) strong (- 53%), (4) very strong (- 62%), and (5) critical (- 74%). By calculating Q at the level of the single tree, trees were clustered according to tree vigour suppression. The weighted frequency of clusters in the field allowed replant impact to be quantified at field level. Applied to a case study on sandy brown, dry diluvial soils in Brandenburg, Germany, the calculated tree vigour suppression was 46% compared to the potential tree vigour on no-replant soil in the same field. It is highly likely that the calculated growth suppression corresponds to ARD-impact This result is relevant for identifying functional changes in soil and for monitoring the economic effects of soil fatigue in apple orchards, particularly where long-period crop rotation or plot exchange are improbable. KW - orchard management KW - trunk cross-sectional area KW - alternaria group KW - apple KW - production KW - soil fatigue KW - apple replant disease Y1 - 2020 U6 - https://doi.org/10.1016/j.ecolind.2019.105846 SN - 1470-160X SN - 1872-7034 VL - 109 PB - Elsevier Science CY - Amsterdam ER -