TY - THES A1 - Al-Halbouni, Djamil T1 - Photogrammetry and distinct element geomechanical modelling of sinkholes and large-scale karstic depressions T1 - Photogrammetrie und geomechanische Diskrete-Elemente-Modellierung von Erdfällen und großskaligen Karstsenken N2 - Sinkholes and depressions are typical landforms of karst regions. They pose a considerable natural hazard to infrastructure, agriculture, economy and human life in affected areas worldwide. The physio-chemical processes of sinkholes and depression formation are manifold, ranging from dissolution and material erosion in the subsurface to mechanical subsidence/failure of the overburden. This thesis addresses the mechanisms leading to the development of sinkholes and depressions by using complementary methods: remote sensing, distinct element modelling and near-surface geophysics. In the first part, detailed information about the (hydro)-geological background, ground structures, morphologies and spatio-temporal development of sinkholes and depressions at a very active karst area at the Dead Sea are derived from satellite image analysis, photogrammetry and geologic field surveys. There, clusters of an increasing number of sinkholes have been developing since the 1980s within large-scale depressions and are distributed over different kinds of surface materials: clayey mud, sandy-gravel alluvium and lacustrine evaporites (salt). The morphology of sinkholes differs depending in which material they form: Sinkholes in sandy-gravel alluvium and salt are generally deeper and narrower than sinkholes in the interbedded evaporite and mud deposits. From repeated aerial surveys, collapse precursory features like small-scale subsidence, individual holes and cracks are identified in all materials. The analysis sheds light on the ongoing hazardous subsidence process, which is driven by the base-level fall of the Dead Sea and by the dynamic formation of subsurface water channels. In the second part of this thesis, a novel, 2D distinct element geomechanical modelling approach with the software PFC2D-V5 to simulating individual and multiple cavity growth and sinkhole and large-scale depression development is presented. The approach involves a stepwise material removal technique in void spaces of arbitrarily shaped geometries and is benchmarked by analytical and boundary element method solutions for circular cavities. Simulated compression and tension tests are used to calibrate model parameters with bulk rock properties for the materials of the field site. The simulations show that cavity and sinkhole evolution is controlled by material strength of both overburden and cavity host material, the depth and relative speed of the cavity growth and the developed stress pattern in the subsurface. Major findings are: (1) A progressively deepening differential subrosion with variable growth speed yields a more fragmented stress pattern with stress interaction between the cavities. It favours multiple sinkhole collapses and nesting within large-scale depressions. (2) Low-strength materials do not support large cavities in the material removal zone, and subsidence is mainly characterised by gradual sagging into the material removal zone with synclinal bending. (3) High-strength materials support large cavity formation, leading to sinkhole formation by sudden collapse of the overburden. (4) Large-scale depression formation happens either by coalescence of collapsing holes, block-wise brittle failure, or gradual sagging and lateral widening. The distinct element based approach is compared to results from remote sensing and geophysics at the field site. The numerical simulation outcomes are generally in good agreement with derived morphometrics, documented surface and subsurface structures as well as seismic velocities. Complementary findings on the subrosion process are provided from electric and seismic measurements in the area. Based on the novel combination of methods in this thesis, a generic model of karst landform evolution with focus on sinkhole and depression formation is developed. A deepening subrosion system related to preferential flow paths evolves and creates void spaces and subsurface conduits. This subsequently leads to hazardous subsidence, and the formation of sinkholes within large-scale depressions. Finally, a monitoring system for shallow natural hazard phenomena consisting of geodetic and geophysical observations is proposed for similarly affected areas. N2 - Dolinen und Senken sind typische Landformen von Karstgebieten. Sie stellen in den betroffenen Gebieten weltweit ein erhebliches Naturrisiko für Infrastruktur, Landwirtschaft, Wirtschaft und das menschliche Leben dar. Die physikalisch-chemischen Prozesse der Entstehung solcher Senkungen sind vielfältig und reichen von Auflösung und Materialerosion im Untergrund bis zu mechanischem Absenken/Bruchs des Oberbodens. Diese Arbeit betrachtet die Mechanismen, die zur Entwicklung von Dolinen und Senken führen, anhand von verschiedenen geowissenschaftlichen Methoden:Fernerkundung, Gesteinsmechanischer Modellierung und pberflächennaher Geophysik. Im ersten Teil werden detaillierte Informationen über den geologischen Hintergrund, Bodenstrukturen, Formen und die räumlich-zeitliche Entwicklung von Senkungen an einem sehr aktiven Karstgebiet am Toten Meer zusammengetragen. Dort bilden sich seit den 1980er Jahren immer größere Ansammlungen von Erdfällen, wie diese Phänomene auch oft genannt werden. Die Form der Erdfälle unterscheidet sich je nach Material, in dem sie entstehen: Erdfälle in Sand-Kies Böden und Salz sind im Allgemeinen tiefer und schmaler als Dolinen in den Schlammablagerungen des Toten Meeres. Wiederholte Aufnahmen aus der Luft mit Hilfe von Drohnen oder Ballons helfen dabei, kleine Absenkungen, einzelne Löcher und Risse zu identifizieren. Die Ursache dieser gefährlichen Absenkungen am Toten Meer ist in dem stetigen Fall des Seespiegels und der Bildung von starken Unterwasserkanälen zu sehen, die fortlaufend Material aus dem Boden herausspülen, sog. Subrosion. Im zweiten Teil dieser Dissertation wird ein neuer, geomechanischer Modellierungsansatz zur Simulation des Wachstums von Hohlräumen im Untergrund und der Bildung von Senkungsstrukturen vorgestellt. Die Simulationen zeigen, dass die Entwicklung der Hohlräume und Erdfälle durch die Materialstärke, die Tiefe und Geschwindigkeit des Hohlraumwachstums und durch das sich bildende Spannungsmuster im Untergrund gesteuert wird. Die wichtigsten Ergebnisse der Studie sind: (1) Eine fortlaufend sich vertiefende Subrosion mit variabler Wachstumsgeschwindigkeit führt zu einem stärker fragmentierten Spannungsmuster im Boden. Es begünstigt das Bilden von ineinander verschachtelten Erdfällen (Cluster) in großen Vertiefungen. (2) Materialien mit niedriger Festigkeit (wie z.B. Schlamm) können keine großen Hohlräume bilden, und das Absinken geschieht durch ein allmähliches Absacken. (3) Materialien mit hoher Festigkeit (wie z.B. verfestigte Sande/Kiese oder Steinsalz) unterstützen die Bildung großer Hohlräume, was zu einem plötzlichen Zusammenbruch des Oberbodens führen kann. (4) Großskalige Senkungsstrukturen bilden sich entweder durch das Verschachteln von kleineren Dolinen, blockweise sprödem Versagen, oder das allmähliche Absinken mit seitlicher Erweiterung. Die Ergebnisse der numerischen Simulationen stimmen im Allgemeinen sehr gut sowohl mit den beobachteten Senkungsformen an der Oberfläche überein, als auch mit Untergrundstrukturen beobachtet durch seismische und elektrische Methoden. Basierend auf der neuartigen Methodenkombination dieser Arbeit wird ein generisches Modell der Entwicklung von Senkungsstrukturen in Karstgebieten vorgestellt. Eine sich vertiefende Subrosion entlang von unterirdischen Kanälen erzeugt Hohlräume und führt in der Folge zu diesen gefährlichen Absenkungen und zur Bildung von Erdfällen innerhalb großer Vertiefungen. KW - Photogrammetry KW - Sinkholes KW - Karst KW - Discrete Element Method KW - Geomechanical Modelling KW - Applied Geophysics KW - Natural Hazards KW - Photogrammetrie KW - Erdfälle KW - Karst KW - Diskrete-Elemente-Methode KW - Geomechanische Modellierung KW - Angewandte Geophysik KW - Naturgefahren Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-432159 ER - TY - THES A1 - Korzeniowska, Karolina T1 - Object-based image analysis for detecting landforms diagnostic of natural hazards T1 - Objektbasierte Bildanalyse zur Erfassung spezieller diagnostischer Landformen von Naturgefahren N2 - Natural and potentially hazardous events occur on the Earth’s surface every day. The most destructive of these processes must be monitored, because they may cause loss of lives, infrastructure, and natural resources, or have a negative effect on the environment. A variety of remote sensing technologies allow the recoding of data to detect these processes in the first place, partly based on the diagnostic landforms that they form. To perform this effectively, automatic methods are desirable. Universal detection of natural hazards is challenging due to their differences in spatial impacts, timing and longevity of consequences, and the spatial resolution of remote-sensing data. Previous studies have reported that topographic metrics such as roughness, which can be captured from digital elevation data, can reveal landforms diagnostic of natural hazards, such as gullies, dunes, lava fields, landslides and snow avalanches, as these landforms tend to be more heterogeneous than the surrounding landscape. A single roughness metric is often limited in such detections; however, a more complex approach that exploits the spatial relation and the location of objects, such as object-based image analysis (OBIA), is desirable. In this thesis, I propose a topographic roughness measure derived from an airborne laser scanning (ALS) digital terrain model (DTM) and discuss its performance in detecting landforms principally diagnostic of natural hazards. I further develop OBIA-based algorithms for the detection of snow avalanches using near-infrared (NIR) aerial images, and the size (changes) of mountain lakes using LANDSAT satellite images. I quantitatively test and document how the level of difficulty in detecting these very challenging landforms depends on the input data resolution, the derivatives that could be evaluated from images and DTMs, the size, shape and complexity of landforms, and the capabilities of obtaining the information in the data. I demonstrate that surface roughness is a promising metric for detecting different landforms in diverse environments, and that OBIA assists significantly in detecting parts of lakes and snow avalanches that may not be correctly assigned by applying only the thresholding of spectral properties of data and their derivatives. The curvature-based surface roughness parameter allows the detection of gullies, dunes, lava fields and landslides with a user’s accuracy of 0.63, 0.21, 0.53, and 0.45, respectively. The OBIA algorithms for detecting lakes and snow avalanches obtained user’s accuracy of 0.98, and 0.78, respectively. Most of the analysed landforms constituted only a small part of the entire dataset, and therefore the user’s accuracy is the most appropriate performance measure that should be given in a such classification, because it tells how many automatically-extracted pixels in fact represent the object that one wants to classify, and its calculation does not take the second (background) class into account. One advantage of the proposed roughness parameter is that it allows the extraction of the heterogeneity of the surface without the need for data detrending. The OBIA approach is novel in that it allows the classification of lakes regardless of the physical state of their water, and also allows the separation of frozen lakes from glaciers that have very similar water indices used in purely optical remote sensing applications. The algorithm proposed for snow avalanches allows the detection of release zones, tracks, and deposition zones by verifying the snow heterogeneity based on a roughness metric evaluated from a water index, and by analysing the local relation of segments with their neighbouring objects. This algorithm contains few steps, which allows for the simultaneous classification of avalanches that occur on diverse mountain slopes and differ in size and shape. This thesis contributes to natural hazard research as it provides automatic solutions to tracking six different landforms that are diagnostic of natural hazards over large regions. This is a step toward delineating areas susceptible to the processes producing these landforms and the improvement of hazard maps. N2 - Naturgefahren und potenziell gefährliche Ereignisse der Erdoberfläche treten jeden Tag auf. Prozesse mit Zerstörungswirkungen sollten identifiziert werden, weil sie Gefahren für besiedelte Gebiete sowie menschliches Leben haben können. Naturgefahren haben erhebliche Einflüsse auf die Umwelt. Eine Vielzahl von Fernerkundungstechnologien, die heutzutage verfügbar sind, erlauben die Aufnahme und Speicherung von Datensätzen, die bei der Erkennung solcher Naturgefahren helfen können. Eine wichtige Grundlage dafür stellt die diagnostische Landform dar, welche die Naturgefahr ausbildet. Für eine effiziente Analyse sind automatische Methoden wünschenswert. Die Verwendung einer universellen Methode zur Erkennung von Naturgefahren ist deshalb eine Herausforderung, weil die räumlichen Ausdehnungen unterschiedlich sind. So können diese unterschiedlichen Alters sein und verschiedene räumliche Auflösungen in Fernerkundungsdaten besitzen. Dies beeinflusst den Detailierungsgrad bei der Abbildung der Erdoberfläche. Frühere Studien zeigen, dass Ableitungen wie beispielweise die Rauheit, die von Fernerkundungsdaten erfasst werden kann, es erlauben, Naturgefahrenphänomene wie z. B. Erosionsrinnen, Dünen, Lavafelder, Erdrutsche und Schneelawinen zu erkennen, weil sie heterogener sind als umgebende Objekte. Dennoch ist es nicht zulässig, allein mittels der eigenständigen Rauheit eine Unterscheidung zwischen den erfassten Landschaftsformen vorzunehmen. Hier ist ein komplexer Ansatz wie die Objektbasierte Bildanalyse (OBIA) wünschenswert, weil ein solcher sowohl die räumliche Relation als auch die Lage von Objekten verwendet. In dieser Dissertation schlage ich einen Oberflächenrauhigkeitsindex, abgeleitet aus einem durch Airborne Laserscanning (ALS) erfassten digitalen Geländemodells (DTM), vor und diskutiere die Faktoren, die die Darstellung von Naturgefahrenphänomenen mittels dieser Variable beeinflussen. Ich präsentiere auch OBIA-basierte, automatische Algorithmen für die Erkennung von Schneelawinen welche aus Nah-Infrarot (NIR) Luftbildern ausgewertet wurden sowie den Verlauf einer Seegrenze, die auf LANDSAT Satellitenbildern abgebildet wird. Ich zeige weiterhin, dass der Schwierigkeitsgrad für die Erfassung der analysierten Phänomene variabel und abhängig von den Dateneigenschaften, der Komplexität der getrackten Phänomene sowie von den qualitativen Ausprägungen des Informationsgehaltes ist. Ferner werde ich zeigen, dass die vorgeschlagene Oberflächenrauhigkeit die räumliche Ausdehnung der verschiedenen Phänomene zu bestimmen erlaubt, und dass der OBIA-Ansatz deutlich bei der Erkennung von Objekten und derjenigen Teile hilft, die nicht korrekt nur durch Verwendung spektraler Eigenschaften von Daten und deren Derivaten zugewiesen werden konnten. Der krümmungsbasierte Oberflächenrauhigkeitindex ermöglicht die Erkennung von Erosionsrinnen, Dünen, Lavafeldern, und Erdrutschen mit einer Benutzergenauigkeit von: 0.63, 0.21, 0.53 und 0.45. Vergleichend dazu erzielen die vorgestellten OBIA-Algorithmen für die Erfassung von Seen und Schneelawinen eine Benutzergenauigkeit von 0.98 und 0.78. Die in dieser Arbeit analysierten Landformen stellen einen Ausschnitt aus dem Gesamtspektrum vorkommender Strukturen dar. Die Benutzergenauigkeit stellt dabei den am besten geeigneten Leistungsindex dar, auf dem basierend eine Klassifikation durchgeführt werden kann. Die Benutzergenauigkeit gibt an, wie viele der automatisch extrahierten Pixel das zu klassifizierende Objekt tatsächlich repräsentieren. Eine Betrachtung einer zweiten (Hintergrund-) Klasse muss durch diesen Ansatz nicht erfolgen. Ein Vorteil des vorgeschlagenen Oberflächenrauhigkeitindex ist, dass er die Extraktion der Heterogenität der Oberfläche ohne die Notwendigkeit eines Daten-detrendings ermöglicht. Der OBIA-Ansatz für die Erfassung von Seegrenzen erlaubt es einerseits, Seen ungeachtet der physikalischen Zustände des Wassers zu klassifizieren und anderseits gefrorene Seen von den Gletschern zu unterschieden, welche ähnliche Eigenschaften beim Wasserindex aufweisen. Der für Schneelawinen vorgeschlagene Algorithmus wiederum ermöglicht insgesamt die Erfassung von Anbruchgebieten, Sturzbahnen und Ablagerungszonen durch Verifikation der Schneeheterogenität sowie die lokalen Beziehungen zu benachbarten Objekten. Dieser Algorithmus enthält einige Schritte, die es erlauben, gleichzeitig Lawinen zu klassifizieren, die in verschiedenen Berghängen auftreten und unterschiedliche Größen und Formen haben. Diese Dissertation trägt zur Naturgefahrenforschung bei, da sie automatische Lösungen für das Monitoring von sechs verschiedenen Landformen bietet, die typisch für Naturgefahren sind. Es wird somit dazu beigetragen, Gebiete abgrenzbar zu machen, welche für das Auftreten von Gefahrenphänomenen besonders anfällig sind. Zudem können damit auch Verbesserungen bei der Erstellung von Gefahrenkarten erreicht werden. KW - object based image analysis KW - automatic classification KW - GIS KW - satellite images KW - photogrammetry KW - landforms KW - natural hazards KW - snow avalanches KW - lakes KW - roughness KW - objektbasierte Bildanalyse KW - automatische Klassifizierung KW - GIS KW - Satellitenbilder KW - Photogrammetrie KW - Landformen KW - Naturgefahren KW - Lawinen KW - Seen KW - Rauheit Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-402240 ER -