TY - JOUR A1 - Schöne, Anne-Christin A1 - Kratz, Karl A1 - Schulz, Burkhard A1 - Lendlein, Andreas T1 - Polymer architecture versus chemical structure as adjusting tools for the enzymatic degradation of oligo(epsilon-caprolactone) based films at the air-water interface JF - Polymer Degradation and Stability N2 - The enzymatic degradation of oligo(epsilon-caprolactone) (OCL) based films at the air-water interface is investigated by Langmuir monolayer degradation (LMD) experiments to elucidate the influence of the molecular architecture and of the chemical structure on the chain scission process. For that purpose, the interactions of 2D monolayers of two star-shaped poly(epsilon-caprolactone)s (PCLs) and three linear OCL based copolyesterurethanes (P(OCL-U)) with the lipase from Pseudomonas cepacia are evaluated in comparison to linear OCL. While the architecture of star-shaped PCL Langmuir layers slightly influences their degradability compared to OCL films, significantly retarded degradations are observed for P(OCL-U) films containing urethane junction units derived from 2, 2 (4), 4-trimethyl hexamethylene diisocyanate (TMDI), hexamethylene diisocyanate (HDI) or lysine ethyl ester diisocyanate (LDI). The enzymatic degradation of the OCL based 2D structures is related to the presence of hydrophilic groups within the macromolecules rather than to the packing density of the film or to the molecular weight. The results reveal that the LMD technique allows the parallel analysis of both the film/enzyme interactions and the degradation process on the molecular level. (C) 2016 Elsevier Ltd. All rights reserved. KW - Langmuir technique KW - Oligo(epsilon-caprolactone) KW - Enzymatic degradation KW - Polymer architecture Y1 - 2016 U6 - https://doi.org/10.1016/j.polymdegradstab.2016.07.010 SN - 0141-3910 SN - 1873-2321 VL - 131 SP - 114 EP - 121 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Reiche, Jürgen A1 - Kratz, Karl A1 - Hofmann, Dieter A1 - Lendlein, Andreas T1 - Current status of Langmuir monolayer degradation of polymeric biomaterials JF - The international journal of artificial organs N2 - Langmuir monolayer degradation (LMD) experiments with polymers possessing outstanding biomedical application potential yield information regarding the kinetics of their hydrolytic or enzymatic chain scission under well-defined and adjustable degradation conditions. A brief review is given of LMD investigations, including the author's own work on 2-dimensional (2D) polymer systems, providing chain scission data, which are not disturbed by simultaneously occurring transport phenomena, such as water penetration into the sample or transport of scission fragments out of the sample. A knowledge-based approach for the description and simulation of polymer hydrolytic and enzymatic degradation based on a combination of fast LMD experiments and computer simulation of the water penetration is briefly introduced. Finally, the advantages and disadvantages of this approach are discussed. KW - Monolayer KW - Hydrolytic degradation KW - Enzymatic degradation KW - Biomaterial KW - Degradable polymer Y1 - 2011 U6 - https://doi.org/10.5301/IJAO.2011.6401 SN - 0391-3988 VL - 34 IS - 2 SP - 123 EP - 128 PB - Wichtig CY - Milano ER -