TY - THES A1 - Pfrang, Konstantin Johannes T1 - Search for light primordial black holes with VERITAS using gamma γ-ray and optical observations T1 - Suche nach leichten primordialen Schwarzen Löchern mit VERITAS anhand von Gammastrahlen- und optischen Beobachtungen N2 - The Very Energetic Radiation Imaging Telescope Array System (VERITAS) is an array of four imaging atmospheric Cherenkov telescopes (IACTs). VERITAS is sensitive to very-high-energy gamma-rays in the range of 100 GeV to >30 TeV. Hypothesized primordial black holes (PBHs) are attractive targets for IACTs. If they exist, their potential cosmological impact reaches beyond the candidacy for constituents of dark matter. The sublunar mass window is the largest unconstrained range of PBH masses. This thesis aims to develop novel concepts searching for light PBHs with VERITAS. PBHs below the sublunar window lose mass due to Hawking radiation. They would evaporate at the end of their lifetime, leading to a short burst of gamma-rays. If PBHs formed at about 10^15 g, the evaporation would occur nowadays. Detecting these signals might not only confirm the existence of PBHs but also prove the theory of Hawking radiation. This thesis probes archival VERITAS data recorded between 2012 and 2021 for possible PBH signals. This work presents a new automatic approach to assess the quality of the VERITAS data. The array-trigger rate and far infrared temperature are well suited to identify periods with poor data quality. These are masked by time cuts to obtain a consistent and clean dataset which contains about 4222 hours. The PBH evaporations could occur at any location in the field of view or time within this data. Only a blind search can be performed to identify these short signals. This thesis implements a data-driven deep learning based method to search for short transient signals with VERITAS. It does not depend on the modelling of the effective area and radial acceptance. This work presents the first application of this method to actual observational IACT data. This thesis develops new concepts dealing with the specifics of the data and the transient detection method. These are reflected in the developed data preparation pipeline and search strategies. After correction for trial factors, no candidate PBH evaporation is found in the data. Thus, new constraints of the local rate of PBH evaporations are derived. At the 99% confidence limit it is below <1.07 * 10^5 pc^-3 yr^-1. This constraint with the new, independent analysis approach is in the range of existing limits for the evaporation rate. This thesis also investigates an alternative novel approach to searching for PBHs with IACTs. Above the sublunar window, the PBH abundance is constrained by optical microlensing studies. The sampling speed, which is of order of minutes to hours for traditional optical telescopes, is a limiting factor in expanding the limits to lower masses. IACTs are also powerful instruments for fast transient optical astronomy with up to O(ns) sampling. This thesis investigates whether IACTs might constrain the sublunar window with optical microlensing observations. This study confirms that, in principle, the fast sampling speed might allow extending microlensing searches into the sublunar mass window. However, the limiting factor for IACTs is the modest sensitivity to detect changes in optical fluxes. This thesis presents the expected rate of detectable events for VERITAS as well as prospects of possible future next-generation IACTs. For VERITAS, the rate of detectable microlensing events in the sublunar range is ~10^-6 per year of observation time. The future prospects for a 100 times more sensitive instrument are at ~0.05 events per year. N2 - Das Very Energetic Radiation Imaging Telescope Array System (VERITAS) ist ein Instrument mit vier atmosphärischen Cherenkov-Teleskopen (IACTs). VERITAS ist empfindlich für sehr hoch-energetische gamma-Strahlung im Bereich von 100 GeV bis >30 TeV. Hypothetische primordiale Schwarze Löcher (PBHs) sind interessante Ziele für IACTs. Falls sie existieren, könnte ihr potentieller kosmologischer Einfluss über die Möglichkeit, dass sie ein Bestandteil der dunklen Materie sind, hinausgehen. Der größte nicht eingeschränkte Bereich der PBH-Massen ist das sublunare Fenster. Das Ziel dieser Arbeit ist es, neue Konzepte für die Suche nach leichten PBHs mit VERITAS zu entwickeln. Durch die Hawking-Strahlung verlieren PBHs unterhalb des sublunaren Fensters an Masse. Am Ende ihrer Lebenszeit verdampfen diese, was einen kurzen Ausbruch an gamma-Strahlung verursacht. Falls PBHs mit ~10^15 g entstanden sind, würde sich dieser Ausbruch in der heutigen Zeit ereignen. Der Nachweis dieser Signale könnte nicht nur die Existenz von PBHs bestätigen, sondern auch die Theorie der Hawking-Strahlung beweisen. In dieser Arbeit werden VERITAS-Daten aus den Jahren 2012 bis 2021 auf mögliche PBH-Signale untersucht. Es wird ein neuer automatisierter Ansatz zur Beurteilung der Qualität der VERITAS-Daten vorgestellt. Die Array-Trigger-Rate und die ferne Infrarot-Temperatur sind gut geeignet, um Zeiträume mit schlechter Datenqualität zu identifizieren. Diese werden maskiert, um einen konsistenten Datensatz zu erhalten, der etwa 4222 Stunden umfasst. Die PBH-Verdampfungen könnten an jeder beliebigen Stelle im Sichtfeld oder zu jeder beliebigen Zeit innerhalb dieser Daten auftreten. Zur Identifizierung dieser kurzen Signale kann nur eine Blindsuche durchgeführt werden. In dieser Arbeit wird eine datengestützte, auf Deep Learning basierende Methode zur Suche nach kurzen vorübergehenden Signalen mit VERITAS implementiert. Die Methode ist nicht von der Modellierung der effektiven Fläche und der radialen Akzeptanz abhängig. Diese Arbeit präsentiert die erste Anwendung dieser Methode mit echten IACT-Beobachtungsdaten. In dieser Arbeit werden neue Konzepte entwickelt, die sich mit den Besonderheiten der Daten und der Methode befassen. Sie spiegeln sich in der entwickelten Datenvorbereitung und den Suchstrategien wider. Nach Korrektur der Versuchsfaktoren wird in den Daten kein Kandidat für PBH-Verdampfung gefunden. Daher wird die lokale Rate von PBH-Verdampfungen auf unter <1.07 * 10^5 pc^-3 yr^-1 an der 99%-Konfidenzgrenze beschränkt. Dieses Limit, welches mit dem neuen, unabhängigen Analyseansatz erreicht wurde, liegt im Bereich der bestehenden Grenzwerte für die Verdunstungsrate. In dieser Arbeit wird auch ein alternativer neuer Ansatz für die Suche nach PBHs mit IACTs untersucht. Oberhalb des sublunaren Fensters wird die Existenz von PBHs durch optische Mikrolensing-Studien eingeschränkt. Für niedrige Massen ist die Abtastgeschwindigkeit, die bei herkömmlichen optischen Teleskopen in der Größenordnung von Minuten bis Stunden liegt, ein limitierender Faktor. IACTs sind auch leistungsstarke Instrumente für die schnelle optische Astronomie mit Abtastraten von bis zu O(ns). In dieser Arbeit wird untersucht, ob IACTs das sublunare Fenster mit optischen Mikrolensing-Beobachtungen beschränken könnten. Diese Studie bestätigt, dass die schnelle Abtastgeschwindigkeit eine Ausweitung der Mikrolensing-Suche auf das sublunare Massenfenster ermöglichen könnte. Der begrenzende Faktor für IACTs ist jedoch die eingeschränkte Empfindlichkeit, um Änderungen im optischen Fluss zu detektieren. In dieser Arbeit werden die erwarteten Raten der nachweisbaren Ereignisse für VERITAS sowie für mögliche zukünftige IACTs der nächsten Generation vorgestellt. Für VERITAS beträgt die Rate der nachweisbaren Microlensing-Ereignisse im sublunaren Bereich ~10^-6 pro Jahr. Die Zukunftsaussichten für ein 100-mal empfindlicheres Instrument liegen bei ~0,05 Ereignissen pro Jahr. KW - PBH KW - dark matter KW - primordial black holes KW - microlensing KW - gamma-rays KW - deep learning KW - LSTM KW - LSTM KW - PBH KW - Dunkle Materie KW - Deep Learning KW - Gammastrahlung KW - Microlensing KW - Primordiale Schwarzen Löchern Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-587266 ER - TY - THES A1 - Giuri, Chiara T1 - VERITAS Dark Matter search in dwarf spheroidal galaxies: an extended analysis T1 - VERITAS-Suche nach dunkler Materie in sphäroidischen Zwerggalaxien: eine erweiterte Analyse” N2 - In the last century, several astronomical measurements have supported that a significant percentage (about 22%) of the total mass of the Universe, on galactic and extragalactic scales, is composed of a mysterious ”dark” matter (DM). DM does not interact with the electromagnetic force; in other words it does not reflect, absorb or emit light. It is possible that DM particles are weakly interacting massive particles (WIMPs) that can annihilate (or decay) into Standard Model (SM) particles, and modern very- high-energy (VHE; > 100 GeV) instruments such as imaging atmospheric Cherenkov telescopes (IACTs) can play an important role in constraining the main properties of such DM particles, by detecting these products. One of the most privileged targets where to look for DM signal are dwarf spheroidal galaxies (dSphs), as they are expected to be high DM-dominated objects with a clean, gas-free environment. Some dSphs could be considered as extended sources, considering the angular resolution of IACTs; their angu- lar resolution is adequate to detect extended emission from dSphs. For this reason, we performed an extended-source analysis, by taking into account in the unbinned maximum likelihood estimation both the energy and the angular extension dependency of observed events. The goal was to set more constrained upper limits on the velocity-averaged cross-section annihilation of WIMPs with VERITAS data. VERITAS is an array of four IACTs, able to detect γ-ray photons ranging between 100 GeV and 30 TeV. The results of this extended analysis were compared against the traditional spectral analysis. We found that a 2D analysis may lead to more constrained results, depending on the DM mass, channel, and source. Moreover, in this thesis, the results of a multi-instrument project are presented too. Its goal was to combine already published 20 dSphs data from five different experiments, such as Fermi-LAT, MAGIC, H.E.S.S., VERITAS and HAWC, in order to set upper limits on the WIMP annihilation cross-section in the widest mass range ever reported. N2 - Im letzten Jahrhundert haben verschiedene mehrere astronomische Messungen gezeigt, dass ein erheblicher Prozentsatz (etwa 22 %) der Gesamtmasse des Universums auf galaktischer und extragalaktischer Ebene aus einer geheimnisvollen ”dunklen” Materie (DM) besteht. DM interagiert nicht mit der elektromagnetischen Kraft und reflektiert, absorbiert oder emittiert daher kein Licht. Es ist möglich, dass es sich bei DM-Teilchen um schwach wechselwirkende massive Teilchen (engl. weakly interacting massive particles, WIMPs) handelt, die in Teilchen des Standardmodells (SM) annihilieren (oder zerfallen) können. Indem sie diese Produkte nachweisen, können moderne Detektoren für sehr hoch energetische (engl. very-high-energy, VHE; 100 GeV) Gammastrahlung, wie zum Beispiel bildgebende atmosphärische Cherenkov-Teleskope (engl. imaging atmospheric Cherenkov telescopes, IACTs), eine wichtige Rolle bei der Bestimmung der Haupteigenschaften solcher DM-Teilchen spielen. Eines der am besten geeignetsten Ziele für die Suche nach DM-Signalen sind sphäroidische Zwerggalaxien (engl. dwarf spheroidal galaxies, dSphs), da diese stark DM-dominierte Objekte mit einer gasfreien Umgebung sind. Die Winkelauflösung von IACTs ist ausreichend, um ausgedehnte Emission von dSphs zu entdecken. Aus diesem Grund haben wir eine Analyse dieser Quellen durchgeführt, indem wir in der unbinned Maximum-Likelihood-Schätzung sowohl die Energie als auch die Abhängigkeit der Winkelausdehnung der beobachteten Gammastrahlung berücksichtigt haben. Das Ziel war es, mit Hilfe der VERITAS-Daten genauere Obergrenzen für den geschwindigkeitsgemittelten Annihilationsquerschnitt von WIMPs zu bestimmen. VERITAS ist eine Anordnung von vier IACTs, die Gammastrahlen im Bereich von 100 GeV bis 30 TeV detektieren können. Die Ergebnisse dieser erweiterten Analyse wurden mit der traditionellen Spektralanalyse verglichen. Es zeigte sich, dass je nach DM-Masse, Kanal und Quelle eine 2D-Analyse zu aussagekräftigeren Ergebnissen führen kann. Darüber hinaus werden in dieser Arbeit auch die Ergebnisse eines Multi-Instrumenten-Projekts vorgestellt. Das Ziel war es, die bereits veröffentlichte 20 dSphs-Datensätze von Fermi-LAT, MAGIC, H.E.S.S., VERITAS und HAWC zu kombinieren, um obere Grenzwerte für den WIMP-Annihilationsquerschnitt im breitesten jemals veröffentlichten Massenbereich zu bestimmen. KW - Dark Matter KW - data analysis KW - Cherenkov telescopes KW - dwarf spheroidal galaxies KW - Dunkle Materie KW - Datenanalyse KW - Cherenkov-Teleskope KW - sphäroidische Zwerggalaxien Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-575869 ER -