TY - THES A1 - Nowak, Jacqueline T1 - Devising computational tools to quantify the actin cytoskeleton and pavement cell shape using network-based approaches N2 - Recent advances in microscopy have led to an improved visualization of different cell processes. Yet, this also leads to a higher demand of tools which can process images in an automated and quantitative fashion. Here, we present two applications that were developed to quantify different processes in eukaryotic cells which rely on the organization and dynamics of the cytoskeleton.. In plant cells, microtubules and actin filaments form the backbone of the cytoskeleton. These structures support cytoplasmic streaming, cell wall organization and tracking of cellular material to and from the plasma membrane. To better understand the underlying mechanisms of cytoskeletal organization, dynamics and coordination, frameworks for the quantification are needed. While this is fairly well established for the microtubules, the actin cytoskeleton has remained difficult to study due to its highly dynamic behaviour. One aim of this thesis was therefore to provide an automated framework to quantify and describe actin organization and dynamics. We used the framework to represent actin structures as networks and examined the transport efficiency in Arabidopsis thaliana hypocotyl cells. Furthermore, we applied the framework to determine the growth mode of cotton fibers and compared the actin organization in wild-type and mutant cells of rice. Finally, we developed a graphical user interface for easy usage. Microtubules and the actin cytoskeleton also play a major role in the morphogenesis of epidermal leaf pavement cells. These cells have highly complex and interdigitated shapes which are hard to describe in a quantitative way. While the relationship between microtubules, the actin cytoskeleton and shape formation is the object of many studies, it is still not clear how and if the cytoskeletal components predefine indentations and protrusions in pavement cell shapes. To understand the underlying cell processes which coordinate cell morphogenesis, a quantitative shape descriptor is needed. Therefore, the second aim of this thesis was the development of a network-based shape descriptor which captures global and local shape features, facilitates shape comparison and can be used to evaluate shape complexity. We demonstrated that our framework can be used to describe and compare shapes from various domains. In addition, we showed that the framework accurately detects local shape features of pavement cells and outperform contending approaches. In the third part of the thesis, we extended the shape description framework to describe pavement cell shape features on tissue-level by proposing different network representations of the underlying imaging data. N2 - Aktuelle Entwicklungen in der Mikroskopie haben zu einer verbesserten Visualisierung von verschiedenen Zellprozessen geführt. Dennoch führt das auch zu einem höheren Bedarf an Werkzeugen, die Bilder in einer automatisierten und quantitativen Weise bearbeiten und analysieren können. Hier präsentieren wir zwei Anwendungen, die entwickelt wurden, um verschiedene Prozesse in eukaryotischen Zellen zu quantifizieren, welche von der Organisation und Dynamik des Zytoskeletts abhängig sind. In Pflanzenzellen bilden Mircotubuli und Aktinfilamente das Rückgrat des Zytoskeletts. Diese Strukturen unterstützen die Zytoplasmaströmung, die Organisation der Zellwand und den Transport von zellulärem Material zu und von der Plasmamembran. Um die zugrundeliegenden Mechanismen der Organisation, Dynamik und Koordination des Zytoskeletts zu verstehen, sind Hilfsmittel zur Quantifizierung notwendig. Während das ziemlich ausführlich für Microtubuli getan wurde, bleibt das Aktin-Zytoskelett schwer zu studieren aufgrund seines hoch dynamischen Verhaltens. Das erste Ziel dieser Arbeit war es daher, einen automatisierten Framework zu entwickeln, der die Aktin-Organisation und Dynamik quantifiziert und beschreibt. Wir haben diesen Framework genutzt, um Aktin-Strukturen als Netzwerke zu repräsentieren und haben damit die Transporteffizienz in Arabidopsis thaliana Hypocotylzellen untersucht. Des Weiteren haben wir den Framework genutzt, um den Wachstumsmodus in Baumwollfasern zu bestimmen und um die Aktin-Organisation in Reis-Wildtyp und Mutanten zu vergleichen. Zuletzt haben wir eine grafische Benutzeroberfläche zur einfacheren Benutzung entwickelt. Microtubuli und das Aktin-Zytoskelett spielen auch eine große Rolle in der Morphogenese von epidermalen Blattzellen. Diese Zellen haben hochkomplexe und interdigitale Formen, welche sehr schwer in einer quantitativen Art zu beschreiben sind. Während die Beziehung zwischen Microtubuli, dem Aktin-Zytoskelett und Formgestaltung der Zellen in vielen Studien untersucht wurde, ist es immer noch nicht ganz klar wie und ob die Zytoskelettkomponenten die Ein- und Ausbuchtungen in Blattzellen vorherbestimmen. Um die zugrundeliegenden Zellprozesse zu verstehen, die die Zellmorphogenese koordinieren, sind quantitative Beschreiber von Formen notwendig. Daher war das zweite Ziel dieser Arbeit die Entwicklung eines netzwerkbasierten Gestaltbeschreibers, welcher globale und lokale Gestaltmerkmale erfasst, einen Gestaltvergleich ermöglich und die Komplexität von Formen evaluieren kann. Wir haben nachgewiesen, dass unser Framework benutzt werden kann, um Formen aus verschiedenen Bereichen zu beschreiben und zu vergleichen. Darüber hinaus haben wir gezeigt, dass der Framework lokale Gestaltmerkmale in Blattzellen akkurat ermittelt und andere konkurrierende Methoden hinter sich lässt. Im dritten Teil der Arbeit haben wir den Gestaltbeschreiber erweitert, um Gestaltmerkmale von Blattzellen, bezogen auf das ganze Zellgewebe, zu beschreiben, indem wir verschiedene Netzwerkrepräsentationen der zugrundeliegenden Bilddaten vorstellen. KW - Netzwerke KW - Bildanalyse KW - Pflanzenzellen KW - Aktinzytoskelett KW - Zellform KW - pavement cells image analysis KW - cell shape KW - cell morphogenesis KW - actin cytoskeleton machine KW - learning networks plant KW - cells epidermis Y1 - 2020 ER - TY - THES A1 - Breuer, David T1 - The plant cytoskeleton as a transportation network T1 - Modellierung des pflanzliche Zytoskeletts als Transportnetzwerk N2 - The cytoskeleton is an essential component of living cells. It is composed of different types of protein filaments that form complex, dynamically rearranging, and interconnected networks. The cytoskeleton serves a multitude of cellular functions which further depend on the cell context. In animal cells, the cytoskeleton prominently shapes the cell's mechanical properties and movement. In plant cells, in contrast, the presence of a rigid cell wall as well as their larger sizes highlight the role of the cytoskeleton in long-distance intracellular transport. As it provides the basis for cell growth and biomass production, cytoskeletal transport in plant cells is of direct environmental and economical relevance. However, while knowledge about the molecular details of the cytoskeletal transport is growing rapidly, the organizational principles that shape these processes on a whole-cell level remain elusive. This thesis is devoted to the following question: How does the complex architecture of the plant cytoskeleton relate to its transport functionality? The answer requires a systems level perspective of plant cytoskeletal structure and transport. To this end, I combined state-of-the-art confocal microscopy, quantitative digital image analysis, and mathematically powerful, intuitively accessible graph-theoretical approaches. This thesis summarizes five of my publications that shed light on the plant cytoskeleton as a transportation network: (1) I developed network-based frameworks for accurate, automated quantification of cytoskeletal structures, applicable in, e.g., genetic or chemical screens; (2) I showed that the actin cytoskeleton displays properties of efficient transport networks, hinting at its biological design principles; (3) Using multi-objective optimization, I demonstrated that different plant cell types sustain cytoskeletal networks with cell-type specific and near-optimal organization; (4) By investigating actual transport of organelles through the cell, I showed that properties of the actin cytoskeleton are predictive of organelle flow and provided quantitative evidence for a coordination of transport at a cellular level; (5) I devised a robust, optimization-based method to identify individual cytoskeletal filaments from a given network representation, allowing the investigation of single filament properties in the network context. The developed methods were made publicly available as open-source software tools. Altogether, my findings and proposed frameworks provide quantitative, system-level insights into intracellular transport in living cells. Despite my focus on the plant cytoskeleton, the established combination of experimental and theoretical approaches is readily applicable to different organisms. Despite the necessity of detailed molecular studies, only a complementary, systemic perspective, as presented here, enables both understanding of cytoskeletal function in its evolutionary context as well as its future technological control and utilization. N2 - Das Zytoskelett ist ein notwendiger Bestandteil lebender Zellen. Es besteht aus verschiedenen Arten von Proteinfilamenten, die ihrerseits komplexe, sich dynamisch reorganisierende und miteinander verknüpfte Netzwerke bilden. Das Zytoskelett erfüllt eine Vielzahl von Funktionen in der Zelle. In Tierzellen bestimmt das Aktin-Zytoskelett maßgeblich die mechanischen Zelleigenschaften und die Zellbewegung. In Pflanzenzellen hingegen kommt dem Aktin-Zytoskelett eine besondere Bedeutung in intrazellulären Transportprozessen zu, bedingt insbesondere durch die starre pflanzliche Zellwand sowie die Zellgröße. Als wesentlicher Faktor für Zellwachstum und somit auch die Produktion von Biomasse, ist Zytoskelett-basierter Transport daher von unmittelbarer ökologischer und ökonomischer Bedeutung. Während das Wissen über die molekularen Grundlagen Zytoskelett-basierter Transportprozesse beständig wächst, sind die zugrunde liegenden Prinzipien zellweiter Organisation bisher weitgehend unbekannt. Diese Dissertation widmet sich daher folgender Frage: Wie hängt die komplexe Architektur des pflanzlichen Zytoskeletts mit seiner intrazellulären Transportfunktion zusammen? Eine Antwort auf diese Frage erfordert eine systemische Perspektive auf Zytoskelettstruktur und -transport. Zu diesem Zweck habe ich Mikroskopiedaten mit hoher raumzeitlicher Auflösung sowie Computer-gestützte Bildanalysen und mathematische Ansätzen der Graphen- und Netzwerktheorie kombiniert. Die vorliegende Dissertation umfasst fünf meiner Publikationen, die sich einem systemischen Verständnis des pflanzlichen Zytoskeletts als Transportnetzwerk widmen: (1) Dafür habe ich Bilddaten-basierte Netzwerkmodelle entwickelt, die eine exakte und automatisierte Quantifizierung der Architektur des Zytoskeletts ermöglichen. Diese Quantifizierung kann beispielsweise in genetischen oder chemischen Versuchen genutzt werden und für eine weitere Erforschung der genetischen Grundlagen und möglicher molekularer Interaktionspartner des Zytoskeletts hilfreich sein; (2) Ich habe nachgewiesen, dass das pflanzliche Aktin-Zytoskelett Eigenschaften effizienter Transportnetzwerk aufweist und Hinweise auf seine evolutionären Organisationsprinzipien liefert; (3) Durch die mathematische Optimierung von Transportnetzwerken konnte ich zeigen, dass unterschiedliche Pflanzenzelltypen spezifische und optimierte Organisationsstrukturen des Aktin-Zytoskeletts aufweisen; (4) Durch quantitative Analyse des Transports von Organellen in Pflanzenzellen habe ich nachgewiesen, dass sich Transportmuster ausgehend von der Struktur des Aktin-Zytoskeletts vorhersagen lassen. Dabei spielen sowohl die Organisation des Zytoskeletts auf Zellebene als auch seine Geometrie eine zentrale Rolle. (5) Schließlich habe ich eine robuste, optimierungs-basierte Methode entwickelt, die es erlaubt, individuelle Filamente eines Aktin-Netzwerks zu identifizieren. Dadurch ist es möglich, die Eigenschaften einzelner Zytoskelettfilamente im zellulären Kontext zu untersuchen. Die im Zuge dieser Dissertation entwickelten Methoden wurden frei und quelloffen als Werkzeuge zur Beantwortung verwandter Fragestellung zugänglich gemacht. Insgesamt liefern die hier präsentierten Ergebnisse und entwickelten Methoden quantitative, systemische Einsichten in die Transportfunktion des Zytoskeletts. Die hier etablierte Kombination von experimentellen und theoretischen Ansätzen kann, trotz des Fokusses auf das pflanzliche Zytoskelett, direkt auf andere Organismen angewendet werden. Als Ergänzung molekularer Studien bildet ein systemischer Blickwinkel, wie er hier entwickelt wurde, die Grundlage für ein Verständnis sowohl des evolutionären Kontextes als auch zukünftiger Kontroll- und Nutzungsmöglichkeiten des pflanzlichen Zytoskeletts. KW - systems biology KW - mathematical modeling KW - cytoskeleton KW - plant science KW - graph theory KW - image analysis KW - Systembiologie KW - mathematische Modellierung KW - Zytoskelett KW - Zellbiologie KW - Graphtheorie KW - Bildanalyse Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-93583 ER -