TY - JOUR A1 - Moreno Curtidor, Catalina A1 - Annunziata, Maria Grazia A1 - Gupta, Saurabh A1 - Apelt, Federico A1 - Richard, Sarah Isabel A1 - Kragler, Friedrich A1 - Müller-Röber, Bernd A1 - Olas, Justyna Jadwiga T1 - Physiological profiling of embryos and dormant seeds in two Arabidopsis accessions reveals a metabolic switch in carbon reserve accumulation JF - Frontiers in plant science N2 - In flowering plants, sugars act as carbon sources providing energy for developing embryos and seeds. Although most studies focus on carbon metabolism in whole seeds, knowledge about how particular sugars contribute to the developmental transitions during embryogenesis is scarce. To develop a quantitative understanding of how carbon composition changes during embryo development, and to determine how sugar status contributes to final seed or embryo size, we performed metabolic profiling of hand-dissected embryos at late torpedo and mature stages, and dormant seeds, in two Arabidopsis thaliana accessions with medium [Columbia-0 (Col-0)] and large [Burren-0 (Bur-0)] seed sizes, respectively. Our results show that, in both accessions, metabolite profiles of embryos largely differ from those of dormant seeds. We found that developmental transitions from torpedo to mature embryos, and further to dormant seeds, are associated with major metabolic switches in carbon reserve accumulation. While glucose, sucrose, and starch predominantly accumulated during seed dormancy, fructose levels were strongly elevated in mature embryos. Interestingly, Bur-0 seeds contain larger mature embryos than Col-0 seeds. Fructose and starch were accumulated to significantly higher levels in mature Bur-0 than Col-0 embryos, suggesting that they contribute to the enlarged mature Bur-0 embryos. Furthermore, we found that Bur-0 embryos accumulated a higher level of sucrose compared to hexose sugars and that changes in sucrose metabolism are mediated by sucrose synthase (SUS), with SUS genes acting non-redundantly, and in a tissue-specific manner to utilize sucrose during late embryogenesis. KW - carbon KW - embryo development KW - hexoses KW - metabolites KW - sucrose KW - synthase Y1 - 2020 U6 - https://doi.org/10.3389/fpls.2020.588433 SN - 1664-462X VL - 11 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Heslop, J. K. A1 - Winkel, Matthias A1 - Anthony, K. M. Walter A1 - Spencer, R. G. M. A1 - Podgorski, D. C. A1 - Zito, P. A1 - Kholodov, A. A1 - Zhang, M. A1 - Liebner, Susanne T1 - Increasing organic carbon biolability with depth in yedoma permafrost BT - ramifications for future climate change JF - Journal of geophysical research : Biogeosciences N2 - Permafrost thaw subjects previously frozen organic carbon (OC) to microbial decomposition, generating the greenhouse gases (GHG) carbon dioxide (CO2) and methane (CH4) and fueling a positive climate feedback. Over one quarter of permafrost OC is stored in deep, ice-rich Pleistocene-aged yedoma permafrost deposits. We used a combination of anaerobic incubations, microbial sequencing, and ultrahigh-resolution mass spectrometry to show yedoma OC biolability increases with depth along a 12-m yedoma profile. In incubations at 3 degrees C and 13 degrees C, GHG production per unit OC at 12-versus 1.3-m depth was 4.6 and 20.5 times greater, respectively. Bacterial diversity decreased with depth and we detected methanogens at all our sampled depths, suggesting that in situ microbial communities are equipped to metabolize thawed OC into CH4. We concurrently observed an increase in the relative abundance of reduced, saturated OC compounds, which corresponded to high proportions of C mineralization and positively correlated with anaerobic GHG production potentials and higher proportions of OC being mineralized as CH4. Taking into account the higher global warming potential (GWP) of CH4 compared to CO2, thawed yedoma sediments in our study had 2 times higher GWP at 12-versus 9.0-m depth at 3 degrees C and 15 times higher GWP at 13 degrees C. Considering that yedoma is vulnerable to processes that thaw deep OC, our findings imply that it is important to account for this increasing GHG production and GWP with depth to better understand the disproportionate impact of yedoma on the magnitude of the permafrost carbon feedback. KW - permafrost KW - carbon KW - yedoma KW - Alaska KW - FT-ICR MS KW - microbes Y1 - 2019 U6 - https://doi.org/10.1029/2018JG004712 SN - 2169-8953 SN - 2169-8961 VL - 124 IS - 7 SP - 2021 EP - 2038 PB - American Geophysical Union CY - Washington ER - TY - GEN A1 - Porada, Philipp A1 - Tamm, Alexandra A1 - Raggio, Jose A1 - Yafang, Cheng A1 - Kleidon, Axel A1 - Pöschl, Ulrich A1 - Weber, Bettina T1 - Global NO and HONO emissions of biological soil crusts estimated by a process-based non-vascular vegetation model T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - The reactive trace gases nitric oxide (NO) and nitrous acid (HONO) are crucial for chemical processes in the atmosphere, including the formation of ozone and OH radicals, oxidation of pollutants, and atmospheric self-cleaning. Recently, empirical studies have shown that biological soil crusts are able to emit large amounts of NO and HONO, and they may therefore play an important role in the global budget of these trace gases. However, the upscaling of local estimates to the global scale is subject to large uncertainties, due to unknown spatial distribution of crust types and their dynamic metabolic activity. Here, we perform an alternative estimate of global NO and HONO emissions by biological soil crusts, using a process-based modelling approach to these organisms, combined with global data sets of climate and land cover. We thereby consider that NO and HONO are emitted in strongly different proportions, depending on the type of crust and their dynamic activity, and we provide a first estimate of the global distribution of four different crust types. Based on this, we estimate global total values of 1.04 Tg yr⁻¹ NO–N and 0.69 Tg yr⁻¹ HONO–N released by biological soil crusts. This corresponds to around 20% of global emissions of these trace gases from natural ecosystems. Due to the low number of observations on NO and HONO emissions suitable to validate the model, our estimates are still relatively uncertain. However, they are consistent with the amount estimated by the empirical approach, which confirms that biological soil crusts are likely to have a strong impact on global atmospheric chemistry via emissions of NO and HONO. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 746 KW - net primary productivity KW - hilly loes plateau KW - mojave desert KW - spatial-distribution KW - nitrous-oxide KW - succulent karoo KW - inner-mongolia KW - carbon KW - lichens KW - bryophytes Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-435682 SN - 1866-8372 IS - 746 SP - 2003 EP - 2031 ER - TY - JOUR A1 - Porada, Philipp A1 - Tamm, Alexandra A1 - Raggio, Jose A1 - Yafang, Cheng A1 - Kleidon, Axel A1 - Pöschl, Ulrich A1 - Weber, Bettina T1 - Global NO and HONO emissions of biological soil crusts estimated by a process-based non-vascular vegetation model JF - Biogeosciences N2 - The reactive trace gases nitric oxide (NO) and nitrous acid (HONO) are crucial for chemical processes in the atmosphere, including the formation of ozone and OH radicals, oxidation of pollutants, and atmospheric self-cleaning. Recently, empirical studies have shown that biological soil crusts are able to emit large amounts of NO and HONO, and they may therefore play an important role in the global budget of these trace gases. However, the upscaling of local estimates to the global scale is subject to large uncertainties, due to unknown spatial distribution of crust types and their dynamic metabolic activity. Here, we perform an alternative estimate of global NO and HONO emissions by biological soil crusts, using a process-based modelling approach to these organisms, combined with global data sets of climate and land cover. We thereby consider that NO and HONO are emitted in strongly different proportions, depending on the type of crust and their dynamic activity, and we provide a first estimate of the global distribution of four different crust types. Based on this, we estimate global total values of 1.04 Tg yr⁻¹ NO–N and 0.69 Tg yr⁻¹ HONO–N released by biological soil crusts. This corresponds to around 20% of global emissions of these trace gases from natural ecosystems. Due to the low number of observations on NO and HONO emissions suitable to validate the model, our estimates are still relatively uncertain. However, they are consistent with the amount estimated by the empirical approach, which confirms that biological soil crusts are likely to have a strong impact on global atmospheric chemistry via emissions of NO and HONO. KW - net primary productivity KW - hilly loes plateau KW - mojave desert KW - spatial-distribution KW - nitrous-oxide KW - succulent karoo KW - inner-mongolia KW - carbon KW - lichens KW - bryophytes Y1 - 2019 U6 - https://doi.org/10.5194/bg-16-2003-2019 SN - 1726-4170 SN - 1726-4189 VL - 16 SP - 2003 EP - 2031 PB - Copernicus Publ. CY - Göttingen ER - TY - THES A1 - Frank-Fahle, Béatrice A. T1 - Methane-cycling microbial communities in permafrost affected soils on Herschel Island and the Yukon Coast, Western Canadian Arctic T1 - Mikrobielle Gemeinschaften des Methankreislaufs in Permafrost beeinflussten Böden auf der Insel Herschel und an der Yukon-Küste, westliche kanadische Arktis N2 - Permafrost-affected ecosystems including peat wetlands are among the most obvious regions in which current microbial controls on organic matter decomposition are likely to change as a result of global warming. Wet tundra ecosystems in particular are ideal sites for increased methane production because of the waterlogged, anoxic conditions that prevail in seasonally increasing thawed layers. The following doctoral research project focused on investigating the abundance and distribution of the methane-cycling microbial communities in four different polygons on Herschel Island and the Yukon Coast. Despite the relevance of the Canadian Western Arctic in the global methane budget, the permafrost microbial communities there have thus far remained insufficiently characterized. Through the study of methanogenic and methanotrophic microbial communities involved in the decomposition of permafrost organic matter and their potential reaction to rising environmental temperatures, the overarching goal of the ensuing thesis is to fill the current gap in understanding the fate of the organic carbon currently stored in Artic environments and its implications regarding the methane cycle in permafrost environments. To attain this goal, a multiproxy approach including community fingerprinting analysis, cloning, quantitative PCR and next generation sequencing was used to describe the bacterial and archaeal community present in the active layer of four polygons and to scrutinize the diversity and distribution of methane-cycling microorganisms at different depths. These methods were combined with soil properties analyses in order to identify the main physico-chemical variables shaping these communities. In addition a climate warming simulation experiment was carried-out on intact active layer cores retrieved from Herschel Island in order to investigate the changes in the methane-cycling communities associated with an increase in soil temperature and to help better predict future methane-fluxes from polygonal wet tundra environments in the context of climate change. Results showed that the microbial community found in the water-saturated and carbon-rich polygons on Herschel Island and the Yukon Coast was diverse and showed a similar distribution with depth in all four polygons sampled. Specifically, the methanogenic community identified resembled the communities found in other similar Arctic study sites and showed comparable potential methane production rates, whereas the methane oxidizing bacterial community differed from what has been found so far, being dominated by type-II rather than type-I methanotrophs. After being subjected to strong increases in soil temperature, the active-layer microbial community demonstrated the ability to quickly adapt and as a result shifts in community composition could be observed. These results contribute to the understanding of carbon dynamics in Arctic permafrost regions and allow an assessment of the potential impact of climate change on methane-cycling microbial communities. This thesis constitutes the first in-depth study of methane-cycling communities in the Canadian Western Arctic, striving to advance our understanding of these communities in degrading permafrost environments by establishing an important new observatory in the Circum-Arctic. N2 - Permafrost beeinflusste Ökosysteme gehören zu den Regionen, in denen als Folge der globalen Erwärmung eine Veränderung des mikrobiell-kontrollierten Abbaus von organischem Material zu erwarten ist. Besonders in den Ökosystemen der feuchten Tundralandschaften kommt es zu einer verstärkten Methanpoduktion unter wassergesättigten und anoxischen Bedingungen, die durch immer tiefere saisonale Auftauschichten begünstigt werden. Die vorliegende Doktorarbeit kontenzentrierte sich auf die Untersuchung der Abundanz und Verteilung der am Methankreislauf beteiligten mikrobiellen Gemeinschaften in vier unterschiedlichen Polygonen auf der Insel Herschel und an der Yukon Küste in Kanada. Trotz des relevanten Beitrags der kanadischen West-Arktis am globalen Methanhaushalt, sind die dortigen mikrobiellen Gemeinschaften im Permafrost bisher nur unzureichend untersucht worden. Die zentrale Zielstellung der vorliegenden Arbeit besteht darin, die derzeitige Lücke im Verständnis der Kohlenstoffdynamik in der Arktis im Zuge von Klimaveränderungen und deren Bedeutung für den Methankreislauf in Permafrost-Ökosystemen zu schließen. Dies erfolgt durch Untersuchungen der am Abbau der organischen Substanz im Permafrost beteiligten methonogenen und methanothrophen mikrobiellen Gemeinschaften und ihrer möglichen Reaktionen auf steigende Umgebungstemperaturen. Um dieses Ziel zu erreichen, wurde ein Multiproxy-Ansatz gewählt, der die Analyse der Gemeinschaften mittels genetischen Fingerprintmethoden, Klonierung, quantitativer PCR und moderner Hochdurchsatzsequenzierung („Next Generation Sequencing“) beinhaltet, um die in der Auftauschicht der vier untersuchten Polygone vorhandenen Bakterien- und Archaeen-Gemeinschaften zu charakterisieren sowie die Diversität und Verteilung der am Methankreislauf beteiligten Mikroorganismen in unterschiedlicher Tiefe eingehend zu analysieren. Diese Studien wurden mit physikalisch-chemischen Habitatuntersuchungen kombiniert, da diese die mikrobiellen Lebensgemeinschaften maßgeblich beeinflussen. Zusätzlich wurde ein Laborexperiment zur Simulation der Klimaerwärmung an intakten Bodenmonolithen von der Insel Herschel durchgeführt, um die Veränderungen der am Methankreislauf beteiligten Gemeinschaften aufgrund steigender Bodentemperaturen zu untersuchen, sowie sicherere Voraussagen bezüglich der Methanfreisetzung in polygonalen Permafrostgebieten im Zusammenhang mit dem Klimawandel treffen zu können. KW - Permafrost KW - Mikrobiologie KW - Methan KW - Kohlenstoff KW - Arktis KW - Permafrost KW - microbiology KW - methane KW - carbon KW - Arctic Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-65345 ER -