TY - JOUR A1 - Schaefer, Laura A1 - Bittmann, Frank T1 - Case report BT - Individualized pulsed electromagnetic field therapy in a Long COVID patient using the adaptive force as biomarker JF - Frontiers in medicine N2 - The increasing prevalence of Long COVID is an imminent public health disaster, and established approaches have not provided adequate diagnostics or treatments. Recently, anesthetic blockade of the stellate ganglion was reported to improve Long COVID symptoms in a small case series, purportedly by "rebooting" the autonomic nervous system. Here, we present a novel diagnostic approach based on the Adaptive Force (AF), and report sustained positive outcome for one severely affected Long COVID patient using individualized pulsed electromagnetic field (PEMF) at the area C7/T1. AF reflects the capacity of the neuromuscular system to adapt adequately to external forces in an isometric holding manner. In case, maximal isometric AF (AFiso(max)) is exceeded, the muscle merges into eccentric muscle action. Thereby, the force usually increases further until maximal AF (AFmax) is reached. In case adaptation is optimal, AFiso(max) is similar to 99-100% of AFmax. This holding capacity (AFiso(max)) was found to be vulnerable to disruption by unpleasant stimulus and, hence, was regarded as functional parameter. AF was assessed by an objectified manual muscle test using a handheld device. Prior to treatment, AFiso(max) was considerably lower than AFmax for hip flexors (62 N = similar to 28% AFmax) and elbow flexors (71 N = similar to 44% AFmax); i.e., maximal holding capacity was significantly reduced, indicating dysfunctional motor control. We tested PEMF at C7/T1, identified a frequency that improved neuromuscular function, and applied it for similar to 15 min. Immediately post-treatment, AFiso(max) increased to similar to 210 N (similar to 100% AFmax) at hip and 184 N (similar to 100% AFmax) at elbow. Subjective Long COVID symptoms resolved the following day. At 4 weeks post-treatment, maximal holding capacity was still on a similarly high level as for immediately post-treatment (similar to 100% AFmax) and patient was symptom-free. At 6 months the patient's Long COVID symptoms have not returned. This case report suggests (1) AF could be a promising diagnostic for post-infectious illness, (2) AF can be used to test effective treatments for post-infectious illness, and (3) individualized PEMF may resolve post-infectious symptoms. KW - individualized pulsed electromagnetic field KW - Adaptive Force KW - muscular holding capacity KW - case report KW - Long COVID KW - post-COVID syndrome KW - muscle weakness KW - fatigue Y1 - 2023 U6 - https://doi.org/10.3389/fmed.2022.879971 SN - 2296-858X VL - 9 PB - Frontiers Media CY - Lausanne ER - TY - GEN A1 - Schaefer, Laura A1 - Carnarius, Friederike A1 - Dech, Silas A1 - Bittmann, Frank T1 - Repeated measurements of Adaptive Force BT - Maximal holding capacity differs from other maximal strength parameters and preliminary characteristics for non-professional strength vs. endurance athletes T2 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe N2 - The Adaptive Force (AF) reflects the neuromuscular capacity to adapt to external loads during holding muscle actions and is similar to motions in real life and sports. The maximal isometric AF (AFisomax) was considered to be the most relevant parameter and was assumed to have major importance regarding injury mechanisms and the development of musculoskeletal pain. The aim of this study was to investigate the behavior of different torque parameters over the course of 30 repeated maximal AF trials. In addition, maximal holding vs. maximal pushing isometric muscle actions were compared. A side consideration was the behavior of torques in the course of repeated AF actions when comparing strength and endurance athletes. The elbow flexors of n = 12 males (six strength/six endurance athletes, non-professionals) were measured 30 times (120 s rest) using a pneumatic device. Maximal voluntary isometric contraction (MVIC) was measured pre and post. MVIC, AFisomax, and AFmax (maximal torque of one AF measurement) were evaluated regarding different considerations and statistical tests. AFmax and AFisomax declined in the course of 30 trials [slope regression (mean ± standard deviation): AFmax = −0.323 ± 0.263; AFisomax = −0.45 ± 0.45]. The decline from start to end amounted to −12.8% ± 8.3% (p < 0.001) for AFmax and −25.41% ± 26.40% (p < 0.001) for AFisomax. AF parameters declined more in strength vs. endurance athletes. Thereby, strength athletes showed a rather stable decline for AFmax and a plateau formation for AFisomax after 15 trials. In contrast, endurance athletes reduced their AFmax, especially after the first five trials, and remained on a rather similar level for AFisomax. The maximum of AFisomax of all 30 trials amounted 67.67% ± 13.60% of MVIC (p < 0.001, n = 12), supporting the hypothesis of two types of isometric muscle action (holding vs. pushing). The findings provided the first data on the behavior of torque parameters after repeated isometric–eccentric actions and revealed further insights into neuromuscular control strategies. Additionally, they highlight the importance of investigating AF parameters in athletes based on the different behaviors compared to MVIC. This is assumed to be especially relevant regarding injury mechanisms. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 831 KW - Adaptive Force KW - maximal isometric Adaptive Force KW - holding capacity KW - neuromuscular control KW - strength vs. endurance athletes KW - injury mechanisms KW - repeated adaptive isometric–eccentric muscle action KW - holding (HIMA) and pushing (PIMA) isometric muscle action Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-588030 SN - 1866-8364 IS - 831 ER - TY - JOUR A1 - Schaefer, Laura A1 - Carnarius, Friederike A1 - Dech, Silas A1 - Bittmann, Frank T1 - Repeated measurements of Adaptive Force BT - maximal holding capacity differs from other maximal strength parameters and preliminary characteristics for non-professional strength vs. endurance athletes JF - Frontiers in physiology N2 - The Adaptive Force (AF) reflects the neuromuscular capacity to adapt to external loads during holding muscle actions and is similar to motions in real life and sports. The maximal isometric AF (AFisoₘₐₓ) was considered to be the most relevant parameter and was assumed to have major importance regarding injury mechanisms and the development of musculoskeletal pain. The aim of this study was to investigate the behavior of different torque parameters over the course of 30 repeated maximal AF trials. In addition, maximal holding vs. maximal pushing isometric muscle actions were compared. A side consideration was the behavior of torques in the course of repeated AF actions when comparing strength and endurance athletes. The elbow flexors of n = 12 males (six strength/six endurance athletes, non-professionals) were measured 30 times (120 s rest) using a pneumatic device. Maximal voluntary isometric contraction (MVIC) was measured pre and post. MVIC, AFisoₘₐₓ, and AFₘₐₓ (maximal torque of one AF measurement) were evaluated regarding different considerations and statistical tests. AFₘₐₓ and AFisoₘₐₓ declined in the course of 30 trials [slope regression (mean ± standard deviation): AFₘₐₓ = −0.323 ± 0.263; AFisoₘₐₓ = −0.45 ± 0.45]. The decline from start to end amounted to −12.8% ± 8.3% (p < 0.001) for AFₘₐₓ and −25.41% ± 26.40% (p < 0.001) for AFisoₘₐₓ. AF parameters declined more in strength vs. endurance athletes. Thereby, strength athletes showed a rather stable decline for AFmax and a plateau formation for AFisoₘₐₓ after 15 trials. In contrast, endurance athletes reduced their AFₘₐₓ, especially after the first five trials, and remained on a rather similar level for AFisomax. The maximum of AFisoₘₐₓ of all 30 trials amounted 67.67% ± 13.60% of MVIC (p < 0.001, n = 12), supporting the hypothesis of two types of isometric muscle action (holding vs. pushing). The findings provided the first data on the behavior of torque parameters after repeated isometric–eccentric actions and revealed further insights into neuromuscular control strategies. Additionally, they highlight the importance of investigating AF parameters in athletes based on the different behaviors compared to MVIC. This is assumed to be especially relevant regarding injury mechanisms. KW - Adaptive Force KW - maximal isometric Adaptive Force KW - holding capacity KW - neuromuscular control KW - strength vs. endurance athletes KW - injury mechanisms KW - repeated adaptive isometric–eccentric muscle action KW - holding (HIMA) and pushing (PIMA) isometric muscle action Y1 - 2023 U6 - https://doi.org/10.3389/fphys.2023.1020954 SN - 1664-042X VL - 14 PB - Frontiers Research Foundation CY - Lausanne ER - TY - GEN A1 - Schaefer, Laura A1 - Bittmann, Frank T1 - The adaptive force as a potential biomechanical parameter in the recovery process of patients with long COVID T2 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Long COVID patients show symptoms, such as fatigue, muscle weakness and pain. Adequate diagnostics are still lacking. Investigating muscle function might be a beneficial approach. The holding capacity (maximal isometric Adaptive Force; AFisomax) was previously suggested to be especially sensitive for impairments. This longitudinal, non-clinical study aimed to investigate the AF in long COVID patients and their recovery process. AF parameters of elbow and hip flexors were assessed in 17 patients at three time points (pre: long COVID state, post: immediately after first treatment, end: recovery) by an objectified manual muscle test. The tester applied an increasing force on the limb of the patient, who had to resist isometrically for as long as possible. The intensity of 13 common symptoms were queried. At pre, patients started to lengthen their muscles at ~50% of the maximal AF (AFmax), which was then reached during eccentric motion, indicating unstable adaptation. At post and end, AFisomax increased significantly to ~99% and 100% of AFmax, respectively, reflecting stable adaptation. AFmax was statistically similar for all three time points. Symptom intensity decreased significantly from pre to end. The findings revealed a substantially impaired maximal holding capacity in long COVID patients, which returned to normal function with substantial health improvement. AFisomax might be a suitable sensitive functional parameter to assess long COVID patients and to support therapy process T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 823 KW - Adaptive Force KW - maximal isometric Adaptive Force KW - holding capacity KW - muscle function KW - long COVID KW - post COVID syndrome KW - muscle weakness KW - neuromuscular control KW - biomechanical parameter Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-585187 SN - 1866-8364 IS - 823 ER - TY - JOUR A1 - Schaefer, Laura A1 - Bittmann, Frank T1 - The adaptive force as a potential biomechanical parameter in the recovery process of patients with long COVID JF - Diagnostics N2 - Long COVID patients show symptoms, such as fatigue, muscle weakness and pain. Adequate diagnostics are still lacking. Investigating muscle function might be a beneficial approach. The holding capacity (maximal isometric Adaptive Force; AFisomax) was previously suggested to be especially sensitive for impairments. This longitudinal, non-clinical study aimed to investigate the AF in long COVID patients and their recovery process. AF parameters of elbow and hip flexors were assessed in 17 patients at three time points (pre: long COVID state, post: immediately after first treatment, end: recovery) by an objectified manual muscle test. The tester applied an increasing force on the limb of the patient, who had to resist isometrically for as long as possible. The intensity of 13 common symptoms were queried. At pre, patients started to lengthen their muscles at ~50% of the maximal AF (AFmax), which was then reached during eccentric motion, indicating unstable adaptation. At post and end, AFisomax increased significantly to ~99% and 100% of AFmax, respectively, reflecting stable adaptation. AFmax was statistically similar for all three time points. Symptom intensity decreased significantly from pre to end. The findings revealed a substantially impaired maximal holding capacity in long COVID patients, which returned to normal function with substantial health improvement. AFisomax might be a suitable sensitive functional parameter to assess long COVID patients and to support therapy process KW - Adaptive Force KW - maximal isometric Adaptive Force KW - holding capacity KW - muscle function KW - long COVID fatigue KW - post COVID syndrome KW - muscle weakness KW - neuromuscular control KW - biomechanical parameter Y1 - 2023 U6 - https://doi.org/10.3390/diagnostics13050882 SN - 2075-4418 VL - 13 IS - 5 PB - MDPI CY - Basel ER -