TY - GEN A1 - Pavesi, Laura A1 - Tiedemann, Ralph A1 - De Matthaeis, Elvira A1 - Ketmaier, Valerio T1 - Genetic connectivity between land and sea BT - the case of the beachflea Orchestia montagui (Crustacea, Amphipoda, Talitridae) in the Mediterranean Sea N2 - Introduction: We examined patterns of genetic divergence in 26 Mediterranean populations of the semi-terrestrial beachflea Orchestia montagui using mitochondrial (cytochrome oxidase subunit I), microsatellite (eight loci) and allozymic data. The species typically forms large populations within heaps of dead seagrass leaves stranded on beaches at the waterfront. We adopted a hierarchical geographic sampling to unravel population structure in a species living at the sea-land transition and, hence, likely subjected to dramatically contrasting forces. Results: Mitochondrial DNA showed historical phylogeographic breaks among Adriatic, Ionian and the remaining basins (Tyrrhenian, Western and Eastern Mediterranean Sea) likely caused by the geological and climatic changes of the Pleistocene. Microsatellites (and to a lesser extent allozymes) detected a further subdivision between and within the Western Mediterranean and the Tyrrhenian Sea due to present-day processes. A pattern of isolation by distance was not detected in any of the analyzed data set. Conclusions: We conclude that the population structure of O. montagui is the result of the interplay of two contrasting forces that act on the species population genetic structure. On one hand, the species semi-terrestrial life style would tend to determine the onset of local differences. On the other hand, these differences are partially counter-balanced by passive movements of migrants via rafting on heaps of dead seagrass leaves across sites by sea surface currents. Approximate Bayesian Computations support dispersal at sea as prevalent over terrestrial regionalism. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 399 KW - Orchestia montagui KW - Talitrids KW - Mediterranean Sea KW - Phylogeography KW - Mitochondrial DNA KW - Microsatellites KW - Allozymes KW - Approximate Bayesian Computation Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-401110 ER - TY - JOUR A1 - Taylan, Mehmet Sait A1 - Di Russo, Claudio A1 - Rampini, Mauro A1 - Ketmaier, Valerio T1 - Molecular systematics of the genus Troglophilus (Rhaphidophoridae, Orthoptera) in Turkey mitochondrial 16S rDNA evidences JF - ZooKeys N2 - This study focuses on the evolutionary relationships among Turkish species of the cave cricket genus Troglophilus. Fifteen populations were studied for sequence variation in a fragment (543 base pairs) of the mitochondrial DNA (mtDNA) 16S rDNA gene (16S) to reconstruct their phylogenetic relationships and biogeographic history. Genetic data retrieved three main clades and at least three divergent lineages that could not be attributed to any of the taxa known for the area. Molecular time estimates suggest that the diversification of the group took place between the Messinian and the Plio-Pleistocene. KW - Troglophilus KW - Rhaphidophoridae KW - Orthoptera KW - 16S rDNA KW - mitochondrial DNA KW - molecular systematics KW - cave crickets Y1 - 2013 U6 - https://doi.org/10.3897/zookeys.257.4133 SN - 1313-2989 IS - 257 SP - 33 EP - 46 PB - Pensoft Publ. CY - Sofia ER - TY - JOUR A1 - Pavesi, Laura A1 - Tiedemann, Ralph A1 - De Matthaeis, Elvira A1 - Ketmaier, Valerio T1 - Genetic connectivity between land and sea - the case of the beachflea Orchestia montagui (Crustacea, Amphipoda, Talitridae) in the Mediterranean Sea JF - Frontiers in zoology N2 - Introduction: We examined patterns of genetic divergence in 26 Mediterranean populations of the semi-terrestrial beachflea Orchestia montagui using mitochondrial (cytochrome oxidase subunit I), microsatellite (eight loci) and allozymic data. The species typically forms large populations within heaps of dead seagrass leaves stranded on beaches at the waterfront. We adopted a hierarchical geographic sampling to unravel population structure in a species living at the sea-land transition and, hence, likely subjected to dramatically contrasting forces. Results: Mitochondrial DNA showed historical phylogeographic breaks among Adriatic, Ionian and the remaining basins (Tyrrhenian, Western and Eastern Mediterranean Sea) likely caused by the geological and climatic changes of the Pleistocene. Microsatellites (and to a lesser extent allozymes) detected a further subdivision between and within the Western Mediterranean and the Tyrrhenian Sea due to present-day processes. A pattern of isolation by distance was not detected in any of the analyzed data set. Conclusions: We conclude that the population structure of O. montagui is the result of the interplay of two contrasting forces that act on the species population genetic structure. On one hand, the species semi-terrestrial life style would tend to determine the onset of local differences. On the other hand, these differences are partially counter-balanced by passive movements of migrants via rafting on heaps of dead seagrass leaves across sites by sea surface currents. Approximate Bayesian Computations support dispersal at sea as prevalent over terrestrial regionalism. KW - Orchestia montagui KW - Talitrids KW - Mediterranean Sea KW - Phylogeography KW - Mitochondrial DNA KW - Microsatellites KW - Allozymes KW - Approximate Bayesian Computation Y1 - 2013 U6 - https://doi.org/10.1186/1742-9994-10-21 SN - 1742-9994 VL - 10 IS - 4-5 PB - BioMed Central CY - London ER - TY - JOUR A1 - Pavesi, Laura A1 - Ketmaier, Valerio T1 - Patterns of genetics structuring and levels of differentiation in supralittoral talitrid amphipods - an overview JF - Crustaceana : international journal of crustacean research N2 - Talitrids are the only family within the order Amphipoda to have colonised supralittoral and terrestrial environments. They live in a variety of settings, from sandy to rocky and pebble beaches, to river and lake banks, and to leaf litter and caves. A common feature is the absence of a planktonic larval stage to facilitate passive dispersal over long-distances. However, some species have broad distributions. Genetic studies over the past 25 years have tried to explain this apparent contradiction by assessing patterns of species genetic structuring on different geographical scales. Here, we review the molecular studies available to date and focus on the population genetics of talitrids. Most of these studies considered populations in the Mediterranean area, but also along the Atlantic coast and in Canary Island caves. From this review, the group emerges as a potential model to understand processes of dispersal and divergence in non-highly-vagile supralittoral organisms. At the same time, studies on these issues are still too restricted geographically: a worldwide scale including different regions would provide us with a better perspective on these problems. KW - Supralittoral talitrids KW - dispersal KW - gene flow KW - allozymes KW - mitochondrial DNA KW - microsatellites Y1 - 2013 U6 - https://doi.org/10.1163/15685403-00003212 SN - 0011-216X VL - 86 IS - 7-8 SP - 890 EP - 907 PB - Brill CY - Leiden ER - TY - INPR A1 - Lo Brutto, Sabrina A1 - Arculeo, Marco A1 - Krapp-Schickel, Traudl A1 - Ketmaier, Valerio T1 - Foreword to the special issue "New frontiers for monitoring european biodiversity - the role and importance of amphipod crustaceans" T2 - Crustaceana : international journal of crustacean research Y1 - 2013 U6 - https://doi.org/10.1163/15685403-00003204 SN - 0011-216X VL - 86 IS - 7-8 SP - 769 EP - 779 PB - Brill CY - Leiden ER - TY - JOUR A1 - Zarattini, Paola A1 - Mura, Graziella A1 - Ketmaier, Valerio T1 - Intra-specific variability in the thirteen known populations of the fairy shrimp Chirocephalus ruffoi (Crustacea: Anostraca) - resting egg morphometrics and mitochondrial DNA reveal decoupled patterns of deep divergence JF - Hydrobiologia : acta hydrobiologica, hydrographica, limnologica et protistologica N2 - Chirocephalus ruffoi is a fairy shrimp endemic to the Italian peninsula, where it is known only from thirteen high mountain locations. Twelve of these are in the Northern Apennines while the thirteenth is about 700 km away in the Calabrian Apennines (Southern Italy). We quantified degree of genetic divergence within the species by sequencing a fragment of the mitochondrial DNA encoding for Cytochrome Oxidase I. We then combined genetic data with the re-analysis of two different datasets on the morphometrics of the resting eggs (cysts) produced by the species as an adaptation to survive seasonal droughts. Genetic data revealed profound divergence; we identified four clusters of haplotypes within the species phylogeography, three in the Northern Apennines and one in the Calabrian Apennines with most of the genetic variation (a parts per thousand 70%) being apportioned among haplogroups. We found high variability in cyst morphometrics, especially in cyst size and height of the spines ornamenting the surface. Genetic and morphometric data are decoupled suggesting that cyst morphology is either under selection or a plastic trait. We, therefore, caution against using cyst morphology for taxonomic purposes in anostracans. KW - Anostraca KW - Resting eggs KW - Morphometrics KW - Cytochrome oxidase I KW - Population structure Y1 - 2013 U6 - https://doi.org/10.1007/s10750-013-1487-8 SN - 0018-8158 VL - 713 IS - 1 SP - 19 EP - 34 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Nahavandi, Nahid A1 - Ketmaier, Valerio A1 - Plath, Martin A1 - Tiedemann, Ralph T1 - Diversification of Ponto-Caspian aquatic fauna - morphology and molecules retrieve congruent evolutionary relationships in Pontogammarus maeoticus (Amphipoda: Pontogammaridae) JF - Molecular phylogenetics and evolution N2 - The geological history of the Ponto-Caspian region, with alternating cycles of isolation and reconnection among the three main basins (Black and Azov Seas, and the more distant Caspian Sea) as well as between them and the Mediterranean Sea, profoundly affected the diversification of its aquatic fauna, leading to a high degree of endemism. Two alternative hypotheses on the origin of this amazing biodiversity have been proposed, corresponding to phases of allopatric separation of aquatic fauna among sea basins: a Late Miocene origin (10-6 MYA) vs. a more recent Pleistocene ancestry (<2 MYA). Both hypotheses support a vicariant origin of (1) Black + Azov Sea lineages on the one hand, and (2) Caspian Sea lineages on the other. Here, we present a study on the Ponto-Caspian endemic amphipod Pontogammarus maeoticus. We assessed patterns of divergence based on (a) two mitochondrial and one nuclear gene, and (b) a morphometric analysis of 23 morphological traits in 16 populations from South and West Caspian Sea, South Azov Sea and North-West Black Sea. Genetic data indicate a long and independent evolutionary history, dating back from the late Miocene to early Pleistocene (6.6-1.6 MYA), for an unexpected, major split between (i) a Black Sea clade and (ii) a well-supported clade grouping individuals from the Caspian and Azov Seas. Absence of shared haplotypes argues against either recent or human-mediated exchanges between Caspian and Azov Seas. A mismatch distribution analysis supports more stable population demography in the Caspian than in the Black Sea populations. Morphological divergence largely followed patterns of genetic divergence: our analyses grouped samples according to the basin of origin and corroborated the close phylogenetic affinity between Caspian and Azov Sea lineages. Altogether, our results highlight the necessity of careful (group-specific) evaluation of evolutionary trajectories in marine taxa that should certainly not be inferred from the current geographical proximity of sea basins alone. (C) 2013 Elsevier Inc. All rights reserved. KW - Biodiversity hotspot KW - Black Sea KW - Caspian Sea KW - Paratethys KW - Sea of Azov KW - Vicariance Y1 - 2013 U6 - https://doi.org/10.1016/j.ympev.2013.05.021 SN - 1055-7903 SN - 1095-9513 VL - 69 IS - 3 SP - 1063 EP - 1076 PB - Elsevier CY - San Diego ER - TY - GEN A1 - Sammler, Svenja A1 - Ketmaier, Valerio A1 - Havenstein, Katja A1 - Tiedemann, Ralph T1 - Intraspecific rearrangement of duplicated mitochondrial control regions in the luzon tarictic hornbill penelopides manillae (Aves: Bucerotidae) T2 - Journal of molecular evolution N2 - Philippine hornbills of the genera Aceros and Penelopides (Bucerotidae) are known to possess a large tandemly duplicated fragment in their mitochondrial genome, whose paralogous parts largely evolve in concert. In the present study, we surveyed the two distinguishable duplicated control regions in several individuals of the Luzon Tarictic Hornbill Penelopides manillae, compare their characteristics within and across individuals, and report on an intraspecific mitochondrial gene rearrangement found in one single specimen, i.e., an interchange between the two control regions. To our knowledge, this is the first observation of two distinct mitochondrial genome rearrangements within a bird species. We briefly discuss a possible evolutionary mechanism responsible for this pattern, and highlight potential implications for the application of control region sequences as a marker in population genetics and phylogeography. KW - Bucerotidae KW - Concerted evolution KW - Control region KW - Mitochondrial gene order KW - Mitochondrial recombination KW - Philippine archipelago Y1 - 2013 U6 - https://doi.org/10.1007/s00239-013-9591-y SN - 0022-2844 SN - 1432-1432 VL - 77 IS - 5-6 SP - 199 EP - 205 PB - Springer CY - New York ER - TY - JOUR A1 - Pavesi, Laura A1 - Tiedemann, Ralph A1 - DeMatthaeis, Elvira A1 - Ketmaier, Valerio T1 - Genetic connectivity between land and sea: the case of the beachflea Orchestia montagui (Crustacea, Amphipoda, Talitridae) in the Mediterranean Sea Y1 - 2013 UR - 1960 = DOI: 10.1186/1742-9994-10-21 SN - 1742-9994 ER -