TY - THES A1 - Allefeld, Carsten T1 - Phase synchronization analysis of event-related brain potentials in language processing N2 - Das Forschungsthema Synchronisation bildet einen Schnittpunkt von Nichtlinearer Dynamik und Neurowissenschaft. So hat zum einen neurobiologische Forschung gezeigt, daß die Synchronisation neuronaler Aktivität einen wesentlichen Aspekt der Funktionsweise des Gehirns darstellt. Zum anderen haben Fortschritte in der physikalischen Theorie zur Entdeckung des Phänomens der Phasensynchronisation geführt. Eine dadurch motivierte Datenanalysemethode, die Phasensynchronisations-Analyse, ist bereits mit Erfolg auf empirische Daten angewandt worden. Die vorliegende Dissertation knüpft an diese konvergierenden Forschungslinien an. Ihren Gegenstand bilden methodische Beiträge zur Fortentwicklung der Phasensynchronisations-Analyse, sowie deren Anwendung auf ereigniskorrelierte Potentiale, eine besonders in den Kognitionswissenschaften wichtige Form von EEG-Daten. Die methodischen Beiträge dieser Arbeit bestehen zum ersten in einer Reihe spezialisierter statistischer Tests auf einen Unterschied der Synchronisationsstärke in zwei verschiedenen Zuständen eines Systems zweier Oszillatoren. Zweitens wird im Hinblick auf den viel-kanaligen Charakter von EEG-Daten ein Ansatz zur multivariaten Phasensynchronisations-Analyse vorgestellt. Zur empirischen Untersuchung neuronaler Synchronisation wurde ein klassisches Experiment zur Sprachverarbeitung repliziert, in dem der Effekt einer semantischen Verletzung im Satzkontext mit demjenigen der Manipulation physischer Reizeigenschaften (Schriftfarbe) verglichen wird. Hier zeigt die Phasensynchronisations-Analyse eine Verringerung der globalen Synchronisationsstärke für die semantische Verletzung sowie eine Verstärkung für die physische Manipulation. Im zweiten Fall läßt sich der global beobachtete Synchronisationseffekt mittels der multivariaten Analyse auf die Interaktion zweier symmetrisch gelegener Gehirnareale zurückführen. Die vorgelegten Befunde zeigen, daß die physikalisch motivierte Methode der Phasensynchronisations-Analyse einen wesentlichen Beitrag zur Untersuchung ereigniskorrelierter Potentiale in den Kognitionswissenschaften zu leisten vermag. N2 - The topic of synchronization forms a link between nonlinear dynamics and neuroscience. On the one hand, neurobiological research has shown that the synchronization of neuronal activity is an essential aspect of the working principle of the brain. On the other hand, recent advances in the physical theory have led to the discovery of the phenomenon of phase synchronization. A method of data analysis that is motivated by this finding - phase synchronization analysis - has already been successfully applied to empirical data. The present doctoral thesis ties up to these converging lines of research. Its subject are methodical contributions to the further development of phase synchronization analysis, as well as its application to event-related potentials, a form of EEG data that is especially important in the cognitive sciences. The methodical contributions of this work consist firstly in a number of specialized statistical tests for a difference in the synchronization strength in two different states of a system of two oscillators. Secondly, in regard of the many-channel character of EEG data an approach to multivariate phase synchronization analysis is presented. For the empirical investigation of neuronal synchronization a classic experiment on language processing was replicated, comparing the effect of a semantic violation in a sentence context with that of the manipulation of physical stimulus properties (font color). Here phase synchronization analysis detects a decrease of global synchronization for the semantic violation as well as an increase for the physical manipulation. In the latter case, by means of the multivariate analysis the global synchronization effect can be traced back to an interaction of symmetrically located brain areas.
The findings presented show that the method of phase synchronization analysis motivated by physics is able to provide a relevant contribution to the investigation of event-related potentials in the cognitive sciences. T2 - Phase synchronization analysis of event-related brain potentials in language processing KW - Synchronisation KW - EEG KW - Sprachverarbeitung KW - Multivariate Analyse KW - synchronization KW - EEG KW - language processing KW - multivariate analysis Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-0001873 ER - TY - THES A1 - Romano Blasco, M. Carmen T1 - Synchronization analysis by means of recurrences in phase space N2 - Die tägliche Erfahrung zeigt uns, daß bei vielen physikalischen Systemen kleine Änderungen in den Anfangsbedingungen auch zu kleinen Änderungen im Verhalten des Systems führen. Wenn man z.B. das Steuerrad beim Auto fahren nur ein wenig zur Seite dreht, unterscheidet sich die Richtung des Wagens auch nur wenig von der ursprünglichen Richtung. Aber es gibt auch Situationen, für die das Gegenteil dieser Regel zutrifft. Die Folge von Kopf und Zahl, die wir erhalten, wenn wir eine Münze werfen, zeigt ein irreguläres oder chaotisches Zeitverhalten, da winzig kleine Änderungen in den Anfangsbedingungen, die z.B. durch leichte Drehung der Hand hervorgebracht werden, zu vollkommen verschiedenen Resultaten führen. In den letzten Jahren hat man sehr viele nichtlineare Systeme mit schnellen Rechnern untersucht und festgestellt, daß eine sensitive Abhängigkeit von den Anfangsbedingungen, die zu einem chaotischen Verhalten führt, keinesfalls die Ausnahme darstellt, sondern eine typische Eigenschaft vieler Systeme ist. Obwohl chaotische Systeme kleinen Änderungen in den Anfangsbedingungen gegenüber sehr empfindlich reagieren, können sie synchronisieren wenn sie durch eine gemeinsame äußere Kraft getrieben werden, oder wenn sie miteinander gekoppelt sind. Das heißt, sie vergessen ihre Anfangsbedingungen und passen ihre Rhythmen aneinander. Diese Eigenschaft chaotischer Systeme hat viele Anwendungen, wie z.B. das Design von Kommunikationsgeräte und die verschlüsselte Übertragung von Mitteilungen. Abgesehen davon, findet man Synchronisation in natürlichen Systemen, wie z.B. das Herz-Atmungssystem, raumverteilte ökologische Systeme, die Magnetoenzephalographische Aktivität von Parkinson Patienten, etc. In solchen komplexen Systemen ist es nicht trivial Synchronisation zu detektieren und zu quantifizieren. Daher ist es notwendig, besondere mathematische Methoden zu entwickeln, die diese Aufgabe erledigen. Das ist das Ziel dieser Arbeit. Basierend auf dergrundlegenden Idee von Rekurrenzen (Wiederkehr) von Trajektorien dynamischer Systeme, sind verschiedene Maße entwickelt worden, die Synchronisation in chaotischen und komplexen Systemen detektieren. Das Wiederkehr von Trajektorien erlaubt uns Vorhersagen über den zukünftigen Zustand eines Systems zu treffen. Wenn man diese Eigenschaft der Wiederkehr von zwei interagierenden Systemen vergleicht, kann man Schlüsse über ihre dynamische Anpassung oder Synchronisation ziehen. Ein wichtiger Vorteil der Rekurrenzmaße für Synchronisation ist die Robustheit gegen Rauschen und Instationariät. Das erlaubt eine Synchronisationsanalyse in Systemen durchzuführen, die bisher nicht darauf untersucht werden konnten. N2 - This work deals with the connection between two basic phenomena in Nonlinear Dynamics: synchronization of chaotic systems and recurrences in phase space. Synchronization takes place when two or more systems adapt (synchronize) some characteristic of their respective motions, due to an interaction between the systems or to a common external forcing. The appearence of synchronized dynamics in chaotic systems is rather universal but not trivial. In some sense, the possibility that two chaotic systems synchronize is counterintuitive: chaotic systems are characterized by the sensitivity ti different initial conditions. Hence, two identical chaotic systems starting at two slightly different initial conditions evolve in a different manner, and after a certain time, they become uncorrelated. Therefore, at a first glance, it does not seem to be plausible that two chaotic systems are able to synchronize. But as we will see later, synchronization of chaotic systems has been demonstrated. On one hand it is important to investigate the conditions under which synchronization of chaotic systems occurs, and on the other hand, to develop tests for the detection of synchronization. In this work, I have concentrated on the second task for the cases of phase synchronization (PS) and generalized synchronization (GS). Several measures have been proposed so far for the detection of PS and GS. However, difficulties arise with the detection of synchronization in systems subjected to rather large amounts of noise and/or instationarities, which are common when analyzing experimental data. The new measures proposed in the course of this thesis are rather robust with respect to these effects. They hence allow to be applied to data, which have evaded synchronization analysis so far. The proposed tests for synchronization in this work are based on the fundamental property of recurrences in phase space. T2 - Synchronization analysis by means of recurrences in phase space KW - Synchronisation KW - Wiederkehrdiagramme KW - Chaos KW - Zeitreihenanalyse KW - Synchronization KW - Recurrence Plots KW - Chaos KW - Data Analysis Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-0001756 ER - TY - THES A1 - Montbrió i Fairen, Ernest T1 - Synchronization in ensembles of nonisochronous oscillators N2 - Diese Arbeit analysiert Synchronisationsphaenomene, die in grossen Ensembles von interagierenden Oszillatoren auftauchen. Im speziellen werden die Effekte von Nicht-Isochronizitaet (die Abhaengigkeit der Frequenz von der Amplitude des Oszillators) auf den makroskopischen Uebergang zur Synchronisation im Detail studiert. Die neu gefundenen Phaenomene (Anomale Synchronisation) werden sowohl in Populationen von Oszillatoren als auch zwischen Oszillator-Ensembles untersucht. N2 - This thesis analyses synchronization phenomena occurring in large ensembles of interacting oscillatory units. In particular, the effects of nonisochronicity (frequency dependence on the oscillator's amplitude) on the macroscopic transition to synchronization are studied in detail. The new phenomena found (Anomalous Synchronization) are investigated in populations of oscillators as well as between oscillator's ensembles. T2 - Synchronization in ensembles of nonisochronous oscillators KW - Synchronisation KW - Oszillatoren KW - Populationen KW - Anomal KW - Nicht-Isochronizität KW - Synchronization KW - Oscillators KW - Populations KW - Anomalous KW - Nonisochronicity Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-0001492 ER -