TY - THES A1 - Jaiser, Ralf T1 - Dreidimensionale Diagnostik der großskaligen Zirkulation der Tropo- und Stratosphäre T1 - Three-dimensional diagnostics of the large-scale circulation in the troposphere and stratosphere N2 - In dieser Arbeit werden Konzepte für die Diagnostik der großskaligen Zirkulation in der Troposphäre und Stratosphäre entwickelt. Der Fokus liegt dabei auf dem Energiehaushalt, auf der Wellenausbreitung und auf der Interaktion der atmosphärischen Wellen mit dem Grundstrom. Die Konzepte werden hergeleitet, wobei eine neue Form des lokalen Eliassen-Palm-Flusses unter Einbeziehung der Feuchte eingeführt wird. Angewendet wird die Diagnostik dann auf den Reanalysedatensatz ERA-Interim und einen durch beobachtete Meerestemperatur- und Eisdaten angetriebenen Lauf des ECHAM6 Atmosphärenmodells. Die diagnostischen Werkzeuge zur Analyse der großskaligen Zirkulation sind einerseits nützlich, um das Verständnis der Dynamik des Klimasystems weiter zu fördern. Andererseits kann das gewonnene Verständnis des Zusammenhangs von Energiequellen und -senken sowie deren Verknüpfung mit synoptischen und planetaren Wellensystemen und dem resultierenden Antrieb des Grundstroms auch verwendet werden, um Klimamodelle auf die korrekte Wiedergabe dieser Beobachtungen zu prüfen. Hier zeigt sich, dass die Abweichungen im untersuchten ECHAM6-Modelllauf bezüglich des Energiehaushalts klein sind, jedoch teils starke Abweichungen bezüglich der Ausbreitung von atmosphärischen Wellen existieren. Planetare Wellen zeigen allgemein zu große Intensitäten in den Eliassen-Palm-Flüssen, während innerhalb der Strahlströme der oberen Troposphäre der Antrieb des Grundstroms durch synoptische Wellen verfälscht ist, da deren vertikale Ausbreitung gegenüber den Beobachtungen verschoben ist. Untersucht wird auch der Einfluss von arktischen Meereisänderungen ausgehend vom Bedeckungsminimum im August/September bis in den Winter. Es werden starke positive Temperaturanomalien festgestellt, welche an der Oberfläche am größten sind. Diese führen vor allem im Herbst zur Intensivierung von synoptischen Systemen in den arktischen Breiten, da die Stabilität der troposphärischen Schichtung verringert ist. Im darauffolgenden Winter stellen sich barotrope bis in die Stratosphäre reichende Änderungen der großskaligen Zirkulation ein, welche auf Meereisänderungen zurückzuführen sind. Der meridionale Druckgradient sinkt und führt so zu einem Muster ähnlich einer negativen Phase der arktischen Oszillation in der Troposphäre und einem geschwächten Polarwirbel in der Stratosphäre. Diese Zusammenhänge werden ebenfalls in einem ECHAM6-Modelllauf untersucht, wobei vor allem der Erwärmungstrend in der Arktis zu gering ist. Die großskaligen Veränderungen im Winter können zum Teil auch im Modelllauf festgestellt werden, jedoch zeigen sich insbesondere in der Stratosphäre Abweichungen für die Periode mit der geringsten Eisausdehnung. Die vertikale Ausbreitung planetarer Wellen von der Troposphäre in die Stratosphäre ist in ECHAM6 mit sehr großen Abweichungen wiedergegeben. Somit stellt die Wellenausbreitung insgesamt den größten in dieser Arbeit festgestellten Mangel in ECHAM6 dar. N2 - In this study concepts for the diagnostics of the large-scale circulation in the troposphere and the stratosphere are developed. Therefore the energy budget, wave propagation and the interaction between waves and the mean flow are analyzed. A corresponding set of diagnostic methods is derived. Furthermore a new type of localized Eliassen Palm Fluxes including moisture fluxes is introduced. These diagnostic methods are then applied to the ERA-Interim reanalysis and to a run of the ECHAM6 atmospheric model forced with observed sea surface temperatures and sea ice data. The diagnostics of the large scale circulation are useful to enhance the understanding of the climate system dynamics. Furthermore the knowledge of the relation between energy sources and sinks, atmospheric waves on planetary and synoptic scales and their forcing of the mean flow is applicable to validate global climate models. The results presented here show small deviations in terms of the energy balance in ECHAM6 but large discrepancies in terms of wave propagation. On the one hand Eliassen Palm fluxes connected to planetary waves are generally too strong. On the other hand the mean flow forcing within upper tropospheric jet streams by synoptic scale waves does not agree with observations, since the vertical propagation is shifted. A second part of this study analyses the influence of Arctic sea ice anomalies at the sea ice minimum in August/September on atmospheric conditions. Strong positive temperature anomalies with their maximum at the surface are observed. In autumn they lead to intensified synoptic scale systems, because of a reduced atmospheric vertical stability. A large-scale barotropic circulation pattern up to the stratosphere appears in winter related to previous late summer sea ice changes. A reduced meridional pressure gradient leads to a pattern related to a negative phase of the Arctic Oscillation in the troposp here as well as related to a weaker stratospheric polar vortex. The same analysis performed with an ECHAM6 model run shows a too small warming of Arctic latitudes. While tropospheric changes in the Arctic are covered by the model to some degree, the stratosphere shows large discrepancies in reproducing the observed changes in the low ice period. The vertical propagation of planetary waves from the troposphere into the stratosphere is reproduced with large differences. Accordingly this study shows the largest errors in ECHAM6 related to atmospheric wave propagation. KW - Energiehaushalt KW - Wellenausbreitung KW - Meereis KW - Eliassen-Palm-Fluss KW - Klimawandel KW - energy budget KW - wave propagation KW - sea ice KW - Eliassen Palm Flux KW - climate change Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-69064 ER - TY - INPR A1 - Feudel, Ulrike T1 - Komplexes Verhalten in multistabilen, schwach dissipativen Systemen N2 - Anhand eines paradigmatischen Modellbeispiels werden die Konsequenzen der Koexistenz vieler Attraktoren auf die globale Dynamik schwach dissipativer Systeme studiert. Es wird gezeigt, dass diese Systeme eine sehr reichhaltige Dynamik besitzen und extrem sensitiv gegenüber Störungen in den Anfangsbedingungen sind. Diese Systeme zeichnen sich durch eine extrem hohe Flexibilität ihres Verhaltens aus. T3 - NLD Preprints - 34 Y1 - 1996 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-14412 ER - TY - THES A1 - Kurcz, Andreas T1 - Qed in periodischen und absorbierenden Medien T1 - Qed in periodic and lossy media N2 - Das Strahlungsfeld in einem absorbierenden, periodischen Dielektrikum ist kanonisch quantisiert worden. Dabei wurde ein eindimensionales Modell mit punktförmigen Streuern betrachtet, deren Polarisierbarkeit den Kramers-Kronig Relationen gehorcht. Es wurde ein Quantisierungsverfahren nach Knöll, Scheel und Welsch [1] verwendet, das als eine Ergänzung zum mikroskopischen Huttner-Barnett Schema [2] aufgefaßt werden kann und in dem auf der Basis der phänomenologischen Maxwell Gleichungen eine bosonische Rauschpolarisation als die Quelle des Feldes auftritt. Das Problem reduziert sich dabei auf die Bestimmung der klassischenGreens Funktion. Die Kramers-Kronig Relationen der komplexen Polarisierbarkeit der Punktstreuer sichert die korrekte Verknüpfung zwischen Dispersion und Absorption. Der Punktstreuer ist dabei ein idealisiertes Modell, um periodische Hintergrundmedien, denen das Strahlungsfeld ausgesetzt ist, zu beschreiben. Er bedarf jedoch eines Kompromisses, um die entsprechenden Rauschquellen zu konstruieren. Es konnte gezeigt werden, daß der Punktstreuer dasselbe Streuverhalten wie eine dünne Potentialschwelle besitzt und damit die technischen Schwierigkeiten für den Fall eines absorptiven Punktstreuers überwunden werden können. An Hand dieses Beispiels konnte das Quantisierungsschema nach Knöll, Scheel und Welsch auf periodische und absorbierende Strukturen angewendet werden. Es ist bekannt, daß die Bestimmung der Modenstruktur für den Fall der Modenzerlegung des Strahlungsfeldes ein rein klassisches Problem darstellt. Mit Ausnahme des Vakuums ist eine zweckmäßige Modenzerlegung nur dann durchführbar, wenn mit einer reellen Polarisierbarkeit die Absorption vernachlässigt werden kann. Aus den Kramers-Kronig Relationen wird klar, daß solch eine Annahme nur in bestimmten Intervallen des Frequenzspektrums gerechtfertigt werden kann. Es wurde gezeigt, daß auch das quantisierte Strahlungsfeld in Anwesenheit der Punktstreuer in eben solchen Intervallen in Quasimoden entwickelt werden kann, wenn man neue Quasioperatoren als Erzeuger und Vernichter einführt. Die bosonischen Vertauschungsrelationen dieser Operatoren konnten bestätigt werden. Die allgemeine Vertauschungsrelation kanonisch konjugierter Variablen im Sinne der kanonischen Quantisierung kann für das elektrische Feld und das Vektorpotential beibehalten werden. In der Greens Funktion sind sämtliche Informationen über die dispersiven und absorptiven Eigenschaften des Dielektrikums sowie über die räumliche Struktur enthalten. Die wesentlichen Merkmale werden dabei durch den Reflexionskoeffizienten nach Boedecker und Henkel [3] bestimmt, der das Reflexionsverhalten an einem unendlich ausgedehnten Halbraum aus periodisch angeordneten Punktstreuern beschreibt. Mit Hilfe des Transfermatrixformalismus war es möglich einen allgemeinen Zugang zum Reflexionsverhalten zunächst endlicher Strukturen zu erhalten. Die Ausdehnung auf den Halbraum mit Hilfe der Klassifizierung in Untergruppen der Transfermatrizen nach ermöglichte es, den Reflexionskoeffizienten nach Boedecker und Henkel [3] auch geometrisch plausibel zu machen. Ein wesentlicher Aspekt von periodischen Systemen ist die Translationssymmetrie, die im Fall unendlich ausgedehnter, verlustfreier Systeme auf eine ideale Bandstruktur führt. Mit Hilfe der Untergruppenklassifizierung kann im verlustfreien Fall die Geometrie der Anordnung indirekt mit der Bandstruktur verknüpft werden. Es konnte nachgewiesen werden, daß auch der einzelne Punktstreuer immer in einer dieser Untergruppen zu finden ist. Dabei besitzt die Bandstruktur der unendlich periodischen Anordnung dieser Streuer immer eine von der Polarisierbarkeit abhängige Bandkante und eine von der Polarisierbarkeit unabhängige Bandkante. Die Bandstruktur, die mit den verlustbehafteten Feldern einhergeht, ist eine doppelt komplexe. Alternativ zu dieser nur schwer zu interpretierenden Bandstruktur wurden die Feldfluktuationen selektiv nach reellen Frequenzen und Wellenzahlen sondiert. Es zeigt sich, daß Absorption besonders in der Nähe der Bandkanten die Bänder verbreitert. Die Ergebnisse, die mit Hilfe der lokalen Zustandsdichtefunktion gewonnen wurden, konnten dabei bestätigt werden. [1] S. Scheel, L. Knöll and D. G. Welsch, Phys.Rev. A 58, 700 (1998). [2] B. Huttner and S. M. Barnett, Phys. Rev. A 46, 4306 (1992). [3] G. Boedecker and C. Henkel, OPTICS EXPRESS 11, 1590 (2003). N2 - A canonical scheme based on the phenomenological Maxwell equations in the presence of dielectric matter is used to quantize the electromagnetic field in a periodic and lossy linear dielectric. We focus on a one-dimensional model of point scatterers with given frequency-dependent complex permittivity, and construct an expansion of the field operators that is based on the Green function and preserves the canonical equal-time commutation relations. Translation symmetry is secured by working with an infinite lattice. The impact of absorption is examined using the local density of states and the decay rate of a phase-coherent dipole chain located inside the structure. Incidentally the model is used to bring about a geometrical interpretation of the reflection from multilayers KW - Quantenelektrodynamik KW - Quantenoptik KW - Photonische Kristalle KW - Gitterstreuung KW - Mehrfachstreuung KW - Electromagnetic Theory KW - Quantum Optics KW - Photonic Crystals KW - Gratings KW - Multiple Scattering Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-35280 ER - TY - JOUR A1 - Regenstein, Wolfgang T1 - Statistische Beschreibung des Resonanzenergietransfers in Lösungen N2 - In resonance energy transfer, photons are transferred from an excited donor to an acceptor over an interaction distance. According to Förster's quantum mechanical theory, this distance can be calculated using the overlap integral of the fluorescence spectrum of the donor and the absorption spectrum of the acceptor. Another possibility of determination is obtained with the help of statistical models, which are compiled in an overview. The distance can be determined by evaluating the extinction curve. In this work, a further statistical variant of the determination of the interaction radius is added and demonstrated in detail using an example. N2 - Beim Resonanzenergietransfer werden Fotonen von einem angeregten Donator über einen Wechselwirkungsabstand auf einen Akzeptor übertragen. Nach der quantenmechanischen Theorie von FÖRSTER kann dieser Abstand mit Hilfe des Überlappungsintegrals von Fluoreszenzspektrum des Donators und Absorp-tionsspektrum des Akzeptors berechnet werden. Eine andere Möglichkeit der Bestimmung erhält man mit Hilfe von statistischen Modellen, die in einem Überblick zusammengestellt sind. Dabei kann der Abstand durch Auswertung der Löschkurve bestimmt werden. In dieser Arbeit wird dazu eine weitere statistische Variante der Bestimmung des Wechselwirkungsradius hinzugefügt und an einem Beispiel ausführlich demonstriert. KW - resonant energy transfer KW - statistical models KW - theory of Förster KW - quenching curve KW - interaction distance KW - Resonanzenergietransfer KW - statistische Modelle KW - Theorie von Förster KW - Löschkurve KW - Wechselwirkungsabstand Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-565009 ER - TY - JOUR A1 - Regenstein, Wolfgang T1 - Statistische Beschreibung des Resonanzenergietransfers in Lösungen N2 - Beim Resonanzenergietransfer werden Fotonen von einem angeregten Donator über einen Wechselwirkungsabstand auf einen Akzeptor übertragen. Nach der quantenmechanischen Theorie von FÖRSTER kann dieser Abstand mit Hilfe des Überlappungsintegrals von Fluoreszenzspektrum des Donators und Absorp-tionsspektrum des Akzeptors berechnet werden. Eine andere Möglichkeit der Bestimmung erhält man mit Hilfe von statistischen Modellen, die in einem Überblick zusammengestellt sind. Dabei kann der Abstand durch Auswertung der Löschkurve bestimmt werden. In dieser Arbeit wird dazu eine weitere statistische Variante der Bestimmung des Wechselwirkungsradius hinzugefügt und an einem Beispiel ausführlich demonstriert. N2 - In resonance energy transfer, photons are transferred from an excited donor to an acceptor over an interaction distance. According to Förster's quantum mechanical theory, this distance can be calculated using the overlap integral of the fluorescence spectrum of the donor and the absorption spectrum of the acceptor. Another possibility of determination is obtained with the help of statistical models, which are compiled in an overview. The distance can be determined by evaluating the extinction curve. In this work, a further statistical variant of the determination of the interaction radius is added and demonstrated in detail using an example. KW - resonant energy transfer KW - statistical models KW - theory of Förster KW - quenching curve KW - interaction distance KW - Resonanzenergietransfer KW - statistische Modelle KW - Theorie von Förster KW - Löschkurve KW - Wechselwirkungsabstand Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-565977 ET - 2. Version ER -